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1. Introduction

This report deals with considerations of the statistical aspects
of carbon fiber risk assessment modeling for fire accidents involving
commercial aircraft. There are numerous advantages to using carbon
fiber materials on aircraft; strength and weight reduction are two such
examples. However, should an aircraft be involved in a fire accident,
the possibility exists for a release of free carbon fibers to the atmo-
sphere with a potential effect of some of these fibers infiltrating

and shorting out electrical and electronic "machinery".

The ultimate goal of the entire carbon fiber risk assessment pro-~
gram was ‘o determine risk profiles for this phenomenon; that is, curves
of potential damage values and their associated probabilities. Very
comprehensive reviews of the factors affecting such profiles and of the
entire risk assessment program itself are given by Huston (1979, 1980).
The present study focuses on the statistical aspects influencing the

development of the risk profiles.

The next section of the report presents an overview of the sta-
tistical problems encountered in producing risk profiles and identifies

the major sources of uncertainty. Sections 3, 4, and 5 treat each of
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these major uncertainty sources in detail, namely Section 3 deals with
imprecise knowledge in establishing the model, Section 4 treats the
problems associated witn model parameter estimation and Section 5 con-
centrates on sampling errors in the Monte Carlo simulation analysis
and obtaining confidence bounds on the results. Finally, Section 6
provides a general framework for building in and obtaining conserva-

tism in risk profile generation.

2. Treatment of Errors and Uncertaiaty
ir. CF Risk Analysis

In assessing CF-related damage due to accidents of commercial
alrcraft, various uncertainties must be dealt with. The cost incurred
from a CF incident will vary according to the circumstances surrounding
the incident, and the resulting uncertainty in the cost incurred is
therefore described by a risk profile. A similar risk profile is used
to describe the uncertainty associated with the total cost incurred in
a year from CF incidents. The goal of risk analysis is to determine
thece profiles which reflect the inherent randomness of actual physical

phenomena.

In the pursuit of estimating these risk profiles, additional
uncertainties (potential sources of error) are encountered. These can
be classified into three general categories: (1) imperfections in the
mathematical model of the physical phenomena, (2) inexact specification
of the numerical and quantitative aspects of the model, (3) statistical
error from simulation sampling. A careful modeling effort and a sta-
tistically sound methodology can help to control these uncertainties,
thereby preventing them from contributing to misleading conclusions
about the risk profiles. In the CF analyses performed here, these
factors have generally been controlled or else dealt with conservatively,

resulting in conservative estimates of th: risk profiles.

We will now elaborate on each of the three sources of uncer-

tainty just mentioned and on how they were dealt with in the CF risk

analysis.
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(1) Imperfect model. By its very nature, the mathematical model
will be an approximate description of the physical phenomena. This re-
sults from imprecise knowledge of the phenomena, the need for tract-
ability, and factors that may have been overlooked. For example. in the
CF model considerable aggregation is necessary, but this is performed
cautiously by using conservative numerical quantities for entire classes
of equipment, buildings, aircraft, etc. Deterministic cost values were
used instead of distributions of costs, but it can be shown that the
"law of averages" implies minimal error propagation due to this modeling
simplification. Many secondary economic effects (lost production, clean-
up, etc.) were included and their costs conservatively estimated; for
example, the modeling approach of ORI allowed the entire gross domestic
product of an area to be lost. 1In general, a modeling philosophy of

"reasoned conservyatism" was followed.

(2) Numerical inputs for the model. The model of CF risk requires
many numerical and other quantitative inputs; among these are accident
rates, positions of vulnerable equipment, weather frequencies, air traffic
projections, building transfer coefficients, failure probability distribu-
tions, etc. Most of these quantities must be estimated from data and then
projected to the year 1993, which leads to only approximate values of
these quantities for use in the model. A conservative approach was gener-
ally taken. Vltor example, for factors such as ¢ release and building
penetration, conservatively high values were used. For many other factors,
sensitivity analyses showed that imprecise knowledge of their true values
had minor effects on the final estimate of the risk profiles. One sensi-
tive parameter, however, is the equinment failure distribution. Equipment
failure data and theoretical considerations showed that exponential fail-
ure laws were appropriate in many cases and conservative in others.

Thus the use of exponential failure laws in the model leads to conserva-
tive results. Further, use of vulnerable 1979-vintage equipment results

in conservative approximations to 1993 electronic equipment.

(3) Simulation sampling error. The risk model is exercised by

simulatton. This is equivalent to drawing a statistical sample from a

-3 -
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population, and attributes of the population are then estimated from the
sample. When the computer simulation sampling is done properly, it is
possible to use modifications of classical statistical techniques to
generate accurate bounds on the sampling error, which permits the estab-

lishment of confidence bounds on the risk profile.

To summarize: by performing careful analyses it is possible to
exert control over th2 effects of various sources of the added uncer-
tainty (or error) which can influence the estimate of the risk profiles.
While the statistical aspects of model building and simulation interpre-
tation are not well developed enough to give precise conclusions on the
total error in the final answers, it is possible to analyze the errors
individually due to the separate sources and to control them. Figures
2-1, 2-2, and 2-3 illustrate th’ -~ process. The interaction of the many
sources is a problem, but a fairly strong degree of confidence in the
conservatism of the final conclusion arises from the conservative and
statistically sound approaches taken to control the individual error

sources.

3. Treatment of Imprecise Knowledge
in Model Conception

Any model 1s an abstraction of and approximation to the real
world. In constructing a nodel, often a trade-off is necessary be-
tween "realism" and tractability. Further, judgements are often re-

quired in making certain assumptions concerning how factors beh..re and

relate.

This section deals with two such examples, namely the use of
deterministic values in place of random variables in order to gain model-
ing efficiency, and the choice of an appropriate probability distribu-

tion for representing equipment failure.
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RISK ASSESSMEWNT PROCEDURE

REAL WORLD:
RANDOM ENVIRONMENT
RISK PROFILES

CONCEIVE MODEL
OF
PHYSICAL PHENOMENA

SPECIFY NUMERICAL
AND QUANTITATIVE
ASPECTS OF MODEL

EXERCISE MODEL
VIA SIMULATION
TO OBSERVE RISK

OUTPUT:
ESTIMATED RISK
\._ PROFILES

Figure 2-1.--Risk profile methodology.
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RISK ASSESSMENT PROCEDURE

ADDITIONAL
UNCERTAINTIES IN THE
RISK ASSESSMENT
PROCEDURE

)

(1)

OVERLOOKED FACTORS
NEED FOR
TRACTABILITY

¥
IMPRECISF KNOWLEDGE}W CONCEIVE MODEL

REAL WORLD:
RANDOM ENVIRONMENT
RISK PROFILES

OF
PHYSICAL PHENOMENA

(2)

SPECIFY NUMERICAL
AND QUANTITATIVE

VALUES BASED ON
ESTIMATES AND
FORECASTS

L_fl.SPECTS OF MODEL

(3)

EXERCISE MODEL
VIA SIMULATION

SAMPLING ERROR
DUE TO FINITE
SIMULATION SAMPLE

RESULTS IN AN
IMPRECISE ESTIMATE
OF RISK

Figure 2-8--Potential errors affecting the risk

TO OBSERVE RISK
I

OUTPUT:
ESTIMATED RISK
PROFILES

profile methodology.
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RISK ASSESSMENT PROCEDURE

ADDITIONAL
UNCERTAINTIES IN THE
RISK ASSESSMENT
PROCEDURE

REAL WORLD:
RANDOM ENVIRONMENT
RISK PROFILES

}

(1)

IMPRECISE KNOWLEDGE
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NEED FOR
TRACTABILITY

CONCEIVE MODEL
OF
PHYSICAL PHENOMENA

(2)

VALUES BASED ON
ESTIMATES AND
FORECASTS

-

SPECIFY NUMERICAL
AND QUANTITATIVE
ASPECTS OF MODEL

(3)

SAMPLING ERROR
DUE TO FINITE

}.

SIMULATION SAMPLE

EXERCISE MODEL
VIA STMULATION
T0 OBSERVE RISK

,1

RESULTS IN AN
IMPRECISE ESTIMATE
OF RISK

.
QUTPUT:

ESTIMATED RISK
PROFILES

STATISTICALLY
CONSERVATIVE
APPROACH

CAREP. AGRREGATION
REASONED CONSERVATISM
SENSITIVITY ANALYSES

CONSERVATIVE VALUES
UPPER BOUNDS
EXPONENTIAL FAILURE LAW
SENSITIVITY ANALYSES

PROPER SAMPLING SCHEME
STATISTICAL ANALYSIS
OF SAMPLING ERROR

CONTROLLED UNCERTAINTY
AND ERROR YIELDING
CONFIDENCE BOUNDS

AND CONSERVATISM

Figure 2-3--Approaches to handling errors in

risk profile methodology.
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3.1 Use of expected or deterministic values
in place of random variables

The simulation analysis of CF damage and its cost is based to a
large extent upon various averages, but the goal is to estimate (with
confidence) risk probabilities. This sectiom focuses on the effect that
variation of input data vhich are assumed constant can have on the sim-

ulation conclusions.

Average values have been used instead of random ones for repair
and downtime costs in the current simniation medeling effort. Consider-
ing the categories and types of repair and disruption costs, it seems
that each would tend to be quite variable. A coefficieant of variation
(c/) equal to 2 or 3 would not be unreasonable for most of thesc costs.
The quesﬁion is: What is the effect of using variable costs in inputs

instead of expected costs?

The possible magnitude of such a change in the model can be seea
for the variance of the national conditional risk profile by considering
the following analysis of a much simpler problem. Let X equal the to-
.tal economic loss or cost, given an accident at some particular airport.
Roughly speaking, X equals the sum of a large number of individual

costs L1’L2’L3"“’LN , Wwhere N 1is random:

N
x= Yy L

g=1 1

Now consider the distribution of X , in particular its mean and vari-

ance. Making the simplification for illustrative purposes that the Li's

are independent and have common mean uL and standard deviation UL ’

we have

E[X] = E[NJy

Var(X] = E[x2] - (E[X])2

2
[? )] (E[nly, )2
E L - nlu
is1 i L

-8 -
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: ) 2 2
L34 g omts

= E[ME[L)) + nz,ouqz—n) (&[LD) *p(n) - (B[N

= E{N]E[LZ] + (Elﬂzl-B[Nl) (En.l)2 - (E[N])zuf

- B{m[E[L I- (Bm)zl + @’ [Em -’ |
= B[N](c ) + pLo,,
Therefdre,
‘ 2 . 22
Var(X] = wuo; +uoy - (3.1)

Now consider

E[L] = N E[L] = N
-k M,

which is analogous to computing risk by assuming the costs are fixed at

their expected values;
E[X'] = E[N]y »
' -
Var{X’] NuL

From the accidental nature of the process generating the cost it is not

unreasonable to assume that N has a Poisson distribution. Then

62 =
NS W
Suppose the coefficient of variation of the cost distribution equais k ,
that is, -
oL/uL =k,
or
GL = kuL .
Then 2 2
and hence

Var[X] = (1+*)Var[X'] .

-9 -
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Thus if the individual costs have coefficient of variation k, th~ true
variation of risk is l-I-k2 times the value obtained using expected costs.
The above 15 not meant to be a precise analysis for the actual
system under consideration. However, the two are close enough that the
above analysis may roughly apply. Namely, if there is much variation in
costs, it can have a pronounced effect on the variation of the total
risk. It is not unreasonab.c to believe the costs could have a coeffi-
cient of variation equal to 2 or 3, and in this case the standard devia-
tion of X will be approximately 2.24 or 3.16, respectively, times as
great as that of X' .

We have seen that in adding up a random number of randomly dis-
tributed costs, if the costs are assumed to be fixed and nonrandom, a

term uuc: is ignored, and that this can be serious if iy is of the

same order of magnitude as o§

is true. To get some idea of what the assumption of fixed costs would

and GL/uLzl . If N 1is Poisson this

mean in that case, risk curves for two cases are plotted in Figure 3-1:
one for fixed costs of $1 per failure and one for a distributicn of costs
for each failure, $0 and $2 being equally likely. A normal ap .oxima-

tion to the Poisson is used.

Note that, in a sense, the severity of the error by assuming
fixed costs depends on how the graphs are used. There are two quantities
that can be read off these graphs: tail probabilities and tail

percentiles.

Tail probabilities: Suppose one is interested in the probability
of the damage exceeding $140. The correct answer is .0024, the incorrect
answer is .000033, almost two orders of magnitude too optimistic--a

rather bad errrr.

Tatl percentiles: Suppose one is interested in the 99.99th per-
centile. The correct answer is $153. The incorrect amswer is $137--not

a very great error.

-10 -
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1.0
thur'e 3-1.--An example using average cost
~ per failure vs. distribution
of eost.
.1
.01
Poisson (U = 100) number
of failures; a failure
- costs: $0 with prob 1/2
” $2 with prob 1/2
Al
&
0
8
A d
1 3]
[
.001 Poisson (y = 100) number
of falluresg; each one
costs $1
.ocvl
-0001 $100 $120 $140 $160 Total Cost, x

- 11 -
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~fing aven thotigh the correct variance is double the incorrect var-
iance, for certain pm:poses it may not be too serious a mistake.

The reason we can obtain a good estimate 6f percentiles from the
incorrect curve is that the slopes are steep. So the question arises:
What happens when the slope of the curve based upon fixed costs is not
steep? Such will only arise for a risk distribution with a heavy tail
which implies a high coefficient of variation oN/ Wy 3 for illustrative

purposes let's suppose on/ Wy = 3 . However, another factor now must be
considered, namely, the magnitudes of ON and uN . Reconsider Equa-
tion (3.1), namely,

Var[X] = pnoi + uﬁ(ﬁ .
If we can assume the total cost incurred during a year equals the sum of
many small costs (perhaps, on the average, 100 such costs), and further

assume that they are roughly independently and identically distributed,

thea in (3.1) W= 100 and ON = 300 . PFurthermore, if we assume a

worst cast of (IL/uL = 10 , then the summands of (3.1) satisfy

= l"f
"N°f. 9 °§ y
Thus using fixed costs ignores approximately 102 of the variation.

The tentative conclusion is this: If one can assume that the total
cost is the sum of many small costs and the number of these small costs

incurred is distributed with ON/ lh >1 , then one can get a fairly good

estimate _of the variance by using the average costs rather than the dis-
tribution of costs. We believe this could be made precise in a manner
analogous to ;roofs of the central limit theorem for sums of indepen-
dent but not identically distributed random variables. However, the
above possibilities hold only when the true mean costs are used. If

these are not known exactly, another source of variation is introduced.

-12 -
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3.2 A general model of electromic
equipment failure

We examine a simple, but fairly gemeral, stochastic model of the
process by which a piece of electronic equipment (hereinafter called the
"item") may fail to function properly because of exposure to carbon
fibers (CF). The model assumes the item to be composed of n indepen-
dent subsystems or "circuits," each of which receives the same amount
of exposure E to CF, thereby causing it to receive "shocks" or "hits"
according to a Poisson stochastic process. Circuit j is assumed to

fail after receiving r, shocks, j=1,...,n , and the item is assumed

3

to fail when 8 circuits have failed; only the cases s=1 and s=2
are examined in detail. Also, we only examine closely the cases in
which all rj are the same.

For the various cases considered we compute F(E) , the probability
that the item fails due to the exposure E . The algebraic form of F(E)
indicates the probability distribution of the exposure level at which

the item fails; for certain combinations of the parameters n,s and r

i
this distribution is either exponential or Erlang-r (for r>1). For

other combinations of the parameters the probability distribution is not

one of the well-known types.

For all cases considered we examine the asymptotic behavior ~f F(E)

as E decreases to zero. It is found that F(E) 1is approximately equal

to cEq for small values of E , where the constant ¢ and the positive
integer q depend on the particular case as well as the parameters. An
exponential failure distribution yields q=1 while an Erlang~r failure
distribution yields g=r .

Our conclusions are: (1) many different failure distributions
arise from different choices of the model parameters; (2) examination
of F(E) for small values of E 1s not a good guide for inferring the
probability distribution of failure of the item.

- 13 -
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3.2.1 The general model

 The, model is based on the following assumptions. The item consists
of n independent circuits, each subjected to an exposure E . Circuit
j (=1,...,n) 1is characterized by the parameter aj » where l/aj is

the awerage amount of incremental exposure between consecutive shocks of
circuit j . More precisely, we assume that for every value of E in
the intérval (0,») , the probability distribution of the number of shocks
of circuit '] during the period of time during which the exposure has
accumulated to a value of E 4s the Poisson distribution given by

-a.E

P(x) = e 1 (a

X
3
304 4B /=

: [ 30,1’2’000 . 3.2

5 % (3.2)
-a B

In particular, P,(0) = e ] .

3
It is assumed that circuit 3j has failed due to the exposure E

if it has received r, or more shocks, where r

3 3

of the values 1,2,... . Let Fj(E) be the probability that circuit j

fails due to the exposure E . Then

(assumed given) has one

Tyl -a,E x,
F(E) = 2 P (x,) = 1- S e (a,E) /x,: .
3 3 x.=0 h | h |
173 k)

it is assumed that the item has failed due to the exposure E 1if
8 or more circuits have failed, where s (assumed given) has one of the
values 1,2,...,n . Let F(E) be the probability that the item fails
due to the exposure E . We will initially write expressions for F(E)

for three fairly general cases and then analyze various cases in detail.

For s=1 we have

n n rj-l -a,E xj
1-F(B) = 1 [-F(®] = 1 | e 1 @B ! . 3.3
j-]_ j j=1 xj-o j j

- 14 -
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Por 8=2 we have

1-F(E) = Pr{0 circuits failed} + Pr{l circuit failed}

n n

= 1 [-F ()] + F(E) n1 [1-F,(E)] 3.4
j=1 3 kzl o 3 (3.4
n rj-l -a E X n rj_1 -a,E
= n e 3 (a,B) I/x.! - (-1) @ 1 (a,py*
kzl j*k szo j xj n ) j=1 szo e (aj ) j/xj'. .

For general s we consider only the case in which rj=r and

aj=a for all j=1,...,n . Then

r-1
Fj(E) = F,(B) = 1- X e aE(aE)xlx! . (3.5)
x=0
and
s-1 n K "
1-FE) = ) (k) [F (B))“[2-F (E)]"" ,
k=0
and
¥ /n k n~k
F(E) = ) (k) [F (E)] [1-F, (E)] . (3.6)
k=s
3.2.2 Case 1: rj=1 for all j=l,...,n
We first treat the situation in which s=1 . For rj=1 we have
-a.E
Fj(E) =1-c¢ i . Then, from (3.3), we find
-naE (3 7)
F(E) = 1-e , .
where
; B
a = = ) a (3.8)
n 3=1 hj

is the average shock rate. Equation (3.7) shows that the probability

distribution of failure is exponential.

- 15 -
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We now examine the asymptotic behavior of F(E) as E decreases
to zero. 'n general, for these asymptotic analyses, we will write

F(E)“'cEq to indicate that F(E)/Eq approaches the constant ¢ as
BE decreases to zero. The method used will almost always be to replace

kE

terms of the form e by the power series izgo(-kE)i/i! and then to

collect coefficients of the various powers of E . Details will be
omitted. The present case of the exponential distribution (s-1, all

rj=1) is the easiest, and yields, from (3.7),

F(E) ~ naE ; (3.9)

i.e., F(E) is asymptotically linear in E .

Now we treat the situation in which s=2 . Direct substitution
into (3.4) yields

n a.E
F(E) = 1 - e—naE[: 2 e 3. (n—l):] . (3.10)
j=1

This expression does not correspond to the cumulative distribution func-
tion (CDF) of any well-known probability distribution. Asymptotic anal-
ysis of (3.10) yields

F(E) ~ cEZ , (3.11)

where ¢ = (n2a2 - ijai)/Z , so F(E) is asymptotically quadratic in E

Specializing expressions (3.10) and (3.11) to the case aj=a for

all j 1leads to simpler expressions for F(E) and c¢ , but the former

still does not cvorrespond to the CDF of any well-known distripution.

- 16 -
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3.2.3 Case 2: rj=2 for all j=1,...,n

~a B
Now FJ(E) = ]l-e i (1+a

(3.3) 1leads to

E) . For the case s=1 expression

3

n
n (1+a,E) . (3.12)
=1

FE) = 1-e2F

This is not the CDF of any well-known distribution, even if it is spe-

cialized to the case aj=a for all j . Asymptotic analysis of (3.12)

yields

F(3) ~ cE’ , (3.13)
where c¢ = (zjai)IZ , 80 here again F(E) 1is asymptotically quadratic
in E .

For 8=2 expression (3.4) lead. to

n E n
F(E) = 1- e’“aE[ Y e [ (em - D 1 (e E)], (3.14)
k=1 g js1 3

and asymptotic analysis of (3.14) yields

F(E) ~ cE4 ’ (3.15)

where
2 2
c=( a,a )4 .
jZk Ik

For the case a

j=a for all j , the constant ¢ simplifies to

a(a-1)a’/8 .

3.2.4 Case 3: n=1

In this case the item is treated as being composed of only one

circuit. We now replace r, by r and a

3

by a , and must have s=1 .

3

- 17 ~
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Then expression (3.3) yields
r-1
F(E) = 1- ) e “F@aB)¥/x! = (). (3.16)

x=0

Differentiation of (3.16) with vespect to E yields the density function

£(E) = dR(E)/dE = a(aE)" ! e 2E/(r-1)! , (3.17)

which shows that the failure distribution is Erlang-r. Asymptotic analy-

sis of (3.16) is a “it rore complicated in this case. hut eventually
yields

F(E) ~ cE' , (3.18)

where ¢ = ar/r! . Thus F(E) is asymptotically linear in E for r=1

(the exponential case), quadratic in E for r=2 , etc.

3.2.5 Case 4: general s

Expression (3.6) gives F(E) for the case r,=r and a,=a for

3 3
all j , and this cannot be significantly simplified, even for r=1 .

For the asymptotic analysis we note that s of the n circuits must

fail in order to cause failure of the item, and each of the s failing

circuits has Fj(E) ~ arEr/r! . Thus

F(E) ~ cE'® , (3.19)

c = (:)(ar/r!)s (3.20)

It is not difficult to see that expression (3.19) also holds when the

where

a, are different; the constant ¢ 1is then no longer given by (3.20),

3

but is instead more complex to express. What is important, of course,

q

is that F(E) ~ ¢cE' , where q = rs .

- 18 -
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3.2,6 Case 5: asymptotic results
for the general case

Por the ssymptotic analysis the argument is still valid that s
of the n circuits must fail in order to cause failure of the item,
rj T
and now we have Fj(E) ~ aj E i / rj! . Asymptotically, therefore, it
is not difficult to see that

F(E) ~ cE?, (3.21)
where c¢ 1is a constant whose exact value is algebraically messy to . .e
down and
8
P=l “p

where the r are ordered so that

i

Expression (3.22) reduces to gq=rs if the s smallest rj values are

all equal to r .

3.2,7 Case &: limiting case
for s8=1 and large n

We consider only the case where r,=r and a,=a for all j .

h| h|
As discussed by Mann, et al. (1974), pp. 102-108, as n approaches

infinity the limiting failure distribution is Weibull with shape para-
meter r . This has CDF

b o
F(E) = 1-¢eCE | (3.23)

where ¢ 1is a constant. For r=1 the Weibull distribution is the same

as the exponential. The asymptotic form of (3.23) is clearly

F(E) ~ cE' . (3.24)

~ 19 -
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3.2.8 Conclusions

The failure model examined leads to different failure distributions

when different chpices are made for the parameters n , s , r and aj .
For s=1 and all rj=1 we obtain the exponential distribution (Case 1).
For n=1 (so that s=1 and r1=r) we obtain the Erlang-+ distribution
(Case 3). PFor n large, s=1 , and rj=r and aj=a for all ., , the

failure distribution is approximately Weitill with shape parameter r
(Case 6). For the other combinations examined, the failure distribution
is not one o. the standard ones. For a particular piece of electronic
equiprm._at, examination of the circuitry and physical arrangement of the
components may help to establish which combinations of the model parame-

ters are most appropriate (if indeed any of them are).

Asymptotic analysis indicates that the failure probability F(E)

behaves like cEl for very small values of F , where c¢ 1s a constant
and q 1is a positive integer. The exponential failure distribution is
the cnly one for which q=1 ; for all other cases q>1 . Both the
Erlang-r (Case 3) and Weibull-r (Case 6) distributions yield g=r , but
these are not the only failure distributions with g=r ; for example,
q=2 also arises (a) with s=2 and all r,=1 (Case 1), (b) with 8=l

h|
and all rj=2 (Case ', and (c) in the general Case 5 with
]
r =2,
p=1 jp

Since the same asymptotic form of F(E) arises from a nunber of differ-
ent failuré distributions, it is clearly inappropriate to infer the type
of failure distribution from an examination of F(E) [or an estimate
?(E\ of F(E)] for small values of E .

- 20 -
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It is important to note that, except for the exponential (s=1

and all r,=1), all the cases examined here lead to failure distributions

3

with increasing hazard rate (IHR). The analyses and remarks of Section
4.2 on testing for the exponential failure distribution are therefore
appropriate.

4. Treatment of Parameter Estimation

A second major source of error in probability modeling is due to
having to estimate parameters of probability distributions and in some
case the probability distributions themselves. This section treats some
estimation problems and the sensitivity of the risk analysis models to

some of the estimated values.

4.1 Estimating the parameter of the
exponential failure model

For the exponential failure model used in the GFRAP risk analysis
it is necessary to know the value of the parameter E . Since the actual
value of the parameter can never really be known, the usual procedure
is .0 use an appropriate estimate obtained from test data. The estimate
most commonly used is the maximum likelihood estimate; we develop that
here. We will use a Bayesian approach to treat the case in which no

failures have been observed.

Suppose min identical pieces of equipment have been exposed to
graphite fibers (or perhaps the same piece of equipment wmtn times)
and m of them have failed at exposures El""’Em while the other n

have survived exposures of Em+1""’Em+n . Either m or n could be
zero. Based on the exponential failure model P = Pr(Item survives
- (E/E)

exposure E) = l-e , it is straightforward to show that the likeli-

hood of this sample result A 1is given by
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n _, -(E/E)) wn -(B,/E)
JE(A) = [: 1 E-l e 1 :][; N e 1 :]
i=1 =mr+l

;im e—(E*/E) ,

where E* = z::: E; 1s the total exposure. The maximum 1ikelihood

"
estimate of E , call it E , is the value of E which maximizes S(A)
it 1s easily found to be

E = E*/m ,

provided m >0 . If w=0 , i.e., no failures have been observed, there
is no maximum likelihood estimate for E ;s we turn therefore to the
Bayesian approach. The Bayesian approach uses a prior distribution on
E and combines it with the likelihood eZ?A) via Bayes' theorem to ob-
tain a posterior distribution on E . The mean of the posterior distri-

bution is often taken as a point estimate of E.

A convenient prior distribution to use is one that is a natural
conjugate of the likelihood éka) , and in this case that is an inverted
gamma-1 distribution [see Raiffa and Schlafier (1961), Chapter 10] of the

form

f(EIm', E') = K.E—m'_l e-(E'/‘E) .

where m'> 0 and E'> 1 are parameters and K' is a normalizing
constant. The mean of this prior distribution exists if m'> 1 and

is E'/(m'-1) . When this prior ¢istribution is combined with the
gample likelihood dP(A) via Bayes' tteorem, the posterior distribution
is easily found to be inverted gamma-1 also, with parameters m'' = m'+m
and E'' =‘E'+E* . The posterior mean is thus (E*+E'})/(mm'-1) .

How should the prior parameters m' and E' be chosen? The
following rationale is admittedly ad hoc, but it is rational and it
leads to a reasonable and useful estimate of E. For m >0 , 8

Bayesian analysis is not needed since we will use the maximum likelihood

estimate E = E*/m ,» 80 we are only concerned with the case m=0 .

- 22 -
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For the case w=0 the posterior mean is (EME')/(m'-l) . If
one failure had been observed along with the total exposure of E* ,

we would use the maximum likelihood estimate '% = E¥/1 = E* ., We will
therefore choose the prior parameters m' and E' so that with ol
and the same total exposure E* , the posterior mean would have this same
value E* ., This yields (EME')/m' = E* , or E' = E¥(m'-1) .

We will choose m' so that the standard deviation of the prior
distribution is k times the prior mean. This requires m' > 2, and
yields the equation

E' kE’
(m'-l)(m'-Z)'S (m'-1)

[Var E|®’, DY I

When this is combined with the previous equation E' = E*(m'-1) , the

posterior mean is found to be
E*(2k2+1)/ (k2+1) .

To indicate a good deal of prior uncertainty about the true -alue of
E it is appropriate to chose k rather large. Even for k=2 the
above expression yields a posterior mean of 1.8E* , and as k tends
toward infinity mw' tends toward 2, E' tends toward E%* , and the
posterior mean tends toward 2.0E* . It is suggested that this value

be used as an appropriate estimate of E for the case of no fa:lures;

i.e., use E = 2E* if w0 .

There is an alternate rationale for choosing m' and E' ,
again ad hoe, that leads to the same prior parameters (m' = 2 and
E' = E*¥) and hence the same value of the posterior mean, 2E* . One
may imagine the value E* as having been chosen as the maximum total
exposure for the experimental testing because it was felt that this
much total exposure would yield at least one failure. From the rela-
tions m''-1 = (w-1)4m and E'' = E'+E* one can interpret the prior
information implied by the choice of m' and E' as being equivalent

to having observed (m'-1l) failures caused by a total exposure of E' .

- 23 -
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The choice of E* as hypothesized just above then suggests the choices
(m'-1) =1 and B' = E* ,

Finally, let us note that if no failures have been observed and
a conservative estimate of E 1is desired, then E = E* is appropriate
gince this is equivalent to conservatively assuming that one failure
has dccurred.

4.2 Testisg for an exponential failure
distribution

We were given failure data for equipwmeant exposed to carbon fibers.
Twenty-one separate experiments were conducted using differené.electfical
components and/or different lengths of types of fibers. Each experiment
was replicated several times (the number varied between 3 and 11). The

equipment, fiber, and performer of these experiments are summarized in
Table 4-1.

Using the data, we wish to test the hypothesis that an exponential
distribution is a reasonable failure model for electrical equipment ex-
posed to graphite fibers, i.e., that the probability p of failure is
related to the exposure x by the functional relationship p = F(x) =

1 - exp(-ax) , for some ) , where 1/) = mean exposure to failure.

The exponential distribution is used widely in reliability studies,
and consequently there is a considerable body of literature concerned
with estimation and testing related to the exponential distribution. A
good discussion is found in the book by Manr, Schafer, and Singpurwalla
(1974), Ch. 7.

4.2.1 The Kolmogorov-Smirnov-
Lilliefors test
Many test are based on the empirical cumulative distribution
function. The most widely used of these appears to be the modification
of the Kolmogorov-Smirnov test due to Lilliefors (K-S-L). We now
describe it.

-2 -
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11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

FAILURE DATA:

Avionics terminal blocks
Dynaco ampliffer
Dynaco

Dynaco

Pynaco

hynaceo

Dynaco

Dynaco

Dynaco

LSI-11 cumputer
LSI-11 computer
19" TV

19" TV

19" TV
Transponder
Transponder
Sunbeam toaster
Sunbeam toaster
Heritage House
Heritage House

Sunbeam toaster

TABLE 4-1
21 TESTS
7.5 mm
7 mm
7 mm
3.5 mm
15 mm
15 mm
3.5 mm
7 mn
1 mre
4.5 mm
7 mm
8 mm
8 mm
8 wm
10 mm
3 mm
7  wm
3 mm
12 mm
7 mm
12 mm

- 25 -

OF EQUIPMENT

GY70

7

T300 sized
T300 unsized
GY70
GY70
T300
GY70
T300
T300

T300

T-419

BRL
Mike Vogel
Mike Vogel

Vogel

Vogel

Mike Harvey
Mike Rarvey
Phillips
BRL
BRL
BRL
BRL
BRL
Bionetics
Bionetics
Bionetics
Bionetics
Bionetics
Bionetics

Bionetics
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Suppose we test n items. For each item, note the exposure level
Xy at which it fails. (Note: all items must be exposed until they

fail; the results described here are not valid 1f items are withdrawn

before they fail.) Thus we get n failure values: X sXgreeesX o

The empirical distribution function is
F n(x) = % % (number of failure values £ x)

(see PFigure 4-1). This function is an unbiased estimate of the underly-
ing CDP, F ; i.e., E(Fh(x)) = F(x) , for all x . (It has mathemati-

cal properties which enable one to use it in test statistics and to
make statements about the possible inference errors of such procedures,

e.g., probability of false rejection of a true hypothesis.)

The usual procedure is to look at the maximum deviation between

~

Fn and the hypothesized CDF Fo . However, we are not hypothesizing a

single distribution, but an entire family, the exponential family

y
(o3
1.0 y = Fn(x)
.5
0 * X ———X ] x s X

failure values

Figure 4-1.--The empirical cwmulative distribution functiom.

{F Ax

y FA(x) =1-e ™, any A}. In this case we estimate the para-
meter )\ from the data (for the exponential X = n / Zzsl xi) , and

then look at the maximum deviation between the empirical CDF ?n and

- 26 -
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the exponential CDF !i , with estimated parameter i , 1.e., we look at

d = sup |§n(x) - Fx(x)| .
0gx<e
If d is large, we reject the hypothesis of exponentiality. If d is
small, we accept it. The critical values depend on n and on o , the
desired probability of false rejection. They are given by Lilliefors
(1969). For example, if n=6 and we desire only a 5% chance of falsely
rejecting the hypothesis of exponentiality we should reject if

sup |F (x) - F&x)| > 406 .

x n A
We have applied the K~S-L test for expomentiality to four of the data
sets obtained from NASA Langley. They are graphed in Figures 4-2 through
4-5. On all four, the hypothesized (best-fitting) exponential CDF is
plotted, and then upper and lower bounds are given, based on that expo—
nential CDF % the critical value (.406, in the case of 6 observatioms).
If the empirical CDF falls in this region, we accept the hypothesis of
exponentiality. Otherwise we reject it. Note: for set #1 (Figure 4-2),
we just barely reject exponentiality at the a=5% level (i.e., we would
expect such a deviation to occur due to chance alone to be an event with
probability <.05); for set #2, we accept exponentiality, even though the
best fitting Erlang has shape parameter 2 or 3; for set #15 (Figure 4-4),
the data is highly significant: reject exponentiality; for set #16 we
accept, but just barely, even though Erlang-4 is the best fitting. In
selecting the data sets to analyze, we picked the ones which seemed to
deviate the most from being exporential. The results do not constitute
an overwhelming rejection of exponentiality. Among 21 sets of data,
81l drawn from exponential populations, it would not be surprising to

find 2, say, which are significant at the 57 level.

To give some idea of how difficult it would be to distinguish
between an exponential distribution and an Erlang-2, we generated a sample
of size 10 on an HP-25 calculator and then normalized the values so the

sample mean was 1. The plot of the exponential CDF, the Erlang~2 CDF,

- 27-
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and the empirical CDF drawn from the exponential are given in Figure 4-6.
Note that for such a small sample, neither distribution is an obvious
choice.

One property of the K-S tests is that they have very low power.
"Power" is defined as the probability of rejecting the hypothesis when
it is false. If the true distribution is Erlang-2, we estimate that the
chance of rejecting tne hypothesis of expoﬁentiality, using a sample of
size 10 and o=.05 , would be .20 or less.

4,2,2 The cumulative total-time-on-test
statis. ¢

The low power of the K-S~L test motivates the search for a more
powerful test, i.e., one that is more likely to reject the hypothesis of
exponentiality when it is false. One way to increase power is to con-
Struct a specialized test which is especially good at rejecting exponen-
tiality when a certain class of alternatives is true and to demonstrate
that this restricted class of alternatives includes all possibilitfes:
roughly speaking, it 1is equivalent to saying that you have a better

chance of making the right decision if there are fewer alternatives from

which to choose.

For the failure distributions under consideration it is reasonable

to assume nondecreasing hazard rate (IHR). Let F be the CDF of a
random variable and f its demsity, then r(x) = £(x)/(1-F(x)) 1is the
hazard rate. It follows that P{x<X<xHx | x<X} = r(x)dx . The dis-
tribution is IHR if r i1s nondecreasing. If r i1s constant, then we
have an exponential distribution. which 1s considered a boundary case of
IHR. IHR is a reasonable assumption for the distribution of failure
probabilities as a function of exposure; it is equivalent to saying: if

two components (#1 and #2) have survived exposure levels e, and e, »

respectively, e, < ey » then the next increment of exposure, AO4e , 1is
more likely to cause failure to #2 than #1' {i.e., r(el)Ae < r(eZ)Ae

<
for el e2 .
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Thus we are in a situatior :f testing the hypothesis of exponen-
tiality versus the alternative of IHR. The most powerful test (we know
of) for this situation is (.icussed by Barlow (1968)., It is actually a
test for exponential vs. increasing hazard rate average (IHRA), A test
which is virtually as powerful is a test based on the time-on-test sta-
tistic. This test has other desirable features, such as applicability
to censored samples and a nice statistical distribution theory which
makes it appear more attractive. It is described in detal by Barlow,
Bartholomew, Bremner and Brunk (1972), Secion 6.2. We apply this test
to data set #16 (plotted in Figure 4-5), the transponder exposed to 3 mm
fibers to GY 70 (Bionmetics data). The 10 normalized failure times
(exposures) are

.36, .56, .58, .85, 1.05, 1.n5, 1.09, 1.26, 1.42, 1.78.

A test statistic is computed as follows: let X, = be the ith ordered

= (n-1i+1)(X, - X ) be the time (exposure)

failure value, let D i:n “i-1l:n

i:n
on test accumulated between the (i~1)st and the ith failure values. This

test uses the fact that

Thus under exponentiality the Di'n's will tend to have O slope as a

function of 1 ; under IHR the slope is negative. Thus this becomes a
regression problem of testing for zero slope vs. negative slope. The

appropriate statistic is

-1 § -1 E
V = n (+-1)p__ ... /n D, .
" =1 n-i+l:n i=1 i:n

Iy
= n D,. |/ n D,
1-1[3-1 j":J =y L0

cumulative-total-time-on-test statistic.
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We reject exponentiality for large valués of Vn « Critical values of
vn are given by Barlow et al, (1972), page 269; for n=10 they are as
follows:

o .10 .05 .025 .010 .005
critical value 5.619 5.927 6.189 6.487 6.683 .

For data set #16 we get the following:

i
1 xi:n Di:n Tn(xizn) - jzlnj:n

1 .36 3.60 3.60

2 .56 1.80 5.40

3 .58 .16 5.56

4 .85 1.89 7.45

5 1.05 1.20 8.65

6 1.06 .05 8.70

7 109 .12 8.82

8 1.26 .51 9.33

9 .42 .36 9.69

10 1.78 .36 10.05

67.20

n-1

v o= 121 T, (X)) [ T (X . ) = ©7.20/10.05 = 6.72 .

This corresponds to significance at approximstely o = .005 . Thus

we reject exponentiality in favor of IHR. (We accepted it using K-S-L.)
Thus using this criterfon (the cumulative-total-time-on-~test statistic)
we have obser red a deviation from exponentiality which would occur by
chance with probability .005. WNote that in the K-S-L, the maximum devia-
tion hit the lower edge of a 957 two-sided region; this lower boundary
would be an approximate boundary for an o = 10%Z level one-sided test.
Thus the K-S-L criterion says such a deviation will occur approximately

10% of the time purely by chance. The extra sensitivity of the
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cumulative-total-time-on~test statistic is due to the fact that it is
tailor-made for testing the situation in which we are interested, while
the R-S is applicable to a broader range of situations and thus should
not be expected to compete favorably with special tests in special

situations.

We applied the cumulative-total-time-on-test statistic to all 21
sets of data. The results are tabulated in Table 4-2. Considering each
experiment separately, there are four cases where exponentiality can be
rejected and three questionable cases. Exponentiality is a plausible

hypothesis for the remaining cases.

These conclusions are based on considering each test separately.
Exponentiality was rejected when the test statistic took an improbable

value (in the 1% extreme tail). However, in 21 trials the chance of an

even of probability .0l occurring at least omce is 1 - (.99)21 = .19 .
Thus all 21 populations could have exponential and yet there would be a
.19 chance of rejecting exponentiality for at least one of the 21. Thus
to be rigorous and be sure that the chance of making such an inference

error is .05, say, or less, we must reject at the .00244 level of

significance (since 1 - (.002&4)21 = ,05) . In this case exponen-

tiality is rejected for only two cases.

It is possible to construct a joint test of exponentiality using

the time-on-test statistic. Note that V =y, +u, + ... + u »
n 1 2 n-1

where ui's are independent uniform [0,1] random variables, under the
assumption of exponentiality. This fact allows us to comstruct a test

for exponentiality of all 21 sets:

Ho ¢ all are exponential;
Hl ¢ all are TIHR, with at least one being
strictly IHR (i.e., not exponential).
Suppose the ith data set consists of n, observations; let V be

i niii
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TESTING FOR EXPONENTIAL VS. IHR USING CUMULATIVE-

TABLE 4-2

TOTAL-TIME-ON-TEST STATISTIC

T-419

Expected

oy gmer gwot MO emofl comluste
ven Bo
1 6 3.86 2.5 015 ?
2 11 7.11 5.0 .01 Reject +
3 5 3.13 2.0 .025 ?
4 6 1.90 2.5 .80 Accept
S 5 1.44 2.0 .81 Accept
6 4 1.58 1.5 44 Accept
7 4 1.02 1.5 .79 Accept
1.95 1.5 .22 Accept
9 1.88 1.5 .25 Accept
10 2.88 2.0 .07 ?
11 10 5.36 4.5 .17 Accept
12 1.09 2.0 .92 Accept
13 1.71 1.5 .36 Accept
14 .90 1.0 .58 Accept
15 8 5.70 3.5 .002 Reject «
16 10 6.72 4.5 .005 Reject «
17 10 8.38 4.5 ~ .000008 Reject «
18 10 3.94 4.5 .73 Accept
19 10 4.39 4.5 .55 Accept
20 10 4.32 4.5 .58 Accept
21 10 2,88 4.5 .98 Accept
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the cumulative-total-time-on-test statistic for the ith data set. Then

21

[ A

is an aggregate statistic, which if H“ is true is the sum of

2]

) (n,-1) independent uniform [0,1] random variables and consequently
i=1

approximately Normal with easily calculated mean and variance, from

which critical values can be computed.

In light of data set #17 (see Table 4-2), it is obvious that Bo :

all exponential must be rejected. Considering #17 am outlier or am

anomaly, we threw it out and tested the hypothesis Ho : all exponmential

for the remaining 20 data sets. The test statistic

v = = 63.75 .

%3

v
=1 Pyl
i#17

1f HO is true, this is an observation from a Normal (l%Q, %%?) dis-

tribution; its level of significance thus equals .002 and Ho is firmly

rejected.

Barlow (1968) has computed the power curve of the cumulative-total-
time-on-test statistic when the true distribution is Gamma with shape
parcmeters between 1 and 5 for an o = .05~level test based on n = 10
observations; see Figure 4~7. Thus, for example, if the true distribution
is Erlang-5, the test will reject exponentiality with probability = 0.69 .

The cumulative-total-time-on-test statistic can be applied to data
with censoring. If items are exposed to graphite fibers, but do not fail,
they are eventually withdrawn from test. The withdrawal exposure level
is noted and the data thus take the form of failure exposure levels and

withdrawal exposure levels. The K-S-L approach has no provision for
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o7

.64

o3

ob

.3

Probability of Rejecting Hos exponential

t

1 2 3 4 5
Shape Parameter of True Gamma Distribution

Figupe 4-7.--Power curve for test of emponmential ve. Gamma based
on cumulative-total-time-on-test statistic.

handling these types of data. Fortunately, the cumulative-total-time-
on-test approach handles these types of data easily; it is just a matter

of redefining D » the total-time-on-test between the (i-1)8t and ith

i:n
failure levels to accommodate withdrawals in this interval. And instead

of computing Vn » We compute Vk , where k 1is the number of observed
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failures. In view of this it is very important to make the distinction
between failure times and times of withdrawal from testing of nonfailed
items.

4.2.3 Conclusions

There are good tests for exponential wvs. IHR, but it is hard to
distinguish between them with small samples. This results in the hy-
pothesis of exponentiality appearing plausible in many instances. Since
to accept exponentiality when the distribution is IHR is a conservative
error, exponentiality should be used as the failure distribution except
in cases where knowledge of the vulnerabilities of the hox allow a more
detailed model which results in another failure distribution such as

an Erlang.

One unexpected feature of the data is that in data sets #15 and
#16, the case with length 10 mm deviated more from exponentiality than
the case with length 3 mm. However, this can be explained by the ran-

domness inherent in the small samples.

For simulation inputs, what is really needed is some upper confi-
dence bounds on the failure distribution CDF or some method of handling
an estimated distribution.

Incorrectly assuming an exponential failure distribution when the
distribution is actually IHR (e.g., Erlang-n with n>1 ) is comservative
in the left-hand tail but optimistic in the right-hand tail. That is,
the exponential distribution with equal mean exposure to failure gives a
higher probability of failure for low exposure levels and a lower prob-
ability of failure for high exposure levels. This is illustrated in
Figure 4-8, which compares the failure probabilities for exponential,
Erlang-2, and Erlang-4 distributions with the same mean value (equal to
1 here). Note that the exponential distribution gives conservative
results for all exposures less than about 1.2 times the mean exposure

to failure, at which point the failure probability is already very high--
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equal to about 0.7. Thus, for the small exposure levels to which actual
electtonic equipment will normally be subjected after a CF indident, the
use of an exponential failure model produces significantly conservative
results.,

4.3 Confidence regions for IHR failure
distribution

In this risk study it is crucial to know the relationship between
exposure level and failure probability for an ele_crical component.
Since this failure probability distribution is estimated from data, there
is uncertainty involved and confidence regions should be used. In this
case an upper confidence bound on the failure probabilities is needed.
Typically, there is a small chance of failure at the exposure levels we
expect to encounter, thus we are primarily concerned with estimating
(with confidence) the left tail of the failure distribution.

To illustrate this problem, we consider some failure data col-
lected by Westinghouse for a 7.5 KV insulator pin exposed to 5 millimeter
fibers. Fifteen tests were performed. The failure data are presented
in Figure 4-9 in the form of an empirical distribution function of fail-

ure probability versus exposure. In accidental releases we expect to see
exposure levels up to 105 fiber sec/m3; consequently, we are concerned
with the extreme left tail in Figure 4-9.

We would like to estimate failure probabilities of this component

for exposures in the neighborhood of 105. There are two classical ways
to do this (See Sections 5.2 and 5.3): we can get point estimates based
on Binomial probabilities. The fact that 0 of 15 components failed at

an exposure level of 105 leads to a 95% confidence statement: "Prob-

ability of component failure at exposure level of 105 fiber sec/m3 is

less than .181." The other method is to compute a Kolmogorov-Smirnov

simultaneous 95% confidence region: "F(e) < ﬁu(e) = %ls(e) + .304,"
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where F(e) equals the probabilitv of failure at exposure level e and

fls(e) equals the estimate of this probability from 15 observed failures.

(The boundary 'i?u of this upper confidence region is plotted in Figure
4-9.) The Kolmogorov-Smirnov gives a 957 confidence statement: "Prob-

ability of component failure at exposure level 105 fiber sec/m3 is less
than . 304."

Clearly, we would like to get more precise estimates. This is
possible. It can be done by exploiting a physical property of the fail-
ure process, namely, that it has an increasing hazard rate (IHR). This
fact was discussed in the context of testing for exponential failure
laws in Section 4.2,

Let F be the failure distribution and f i{its density. Define
h(e) = f(e)/(1-F(e)) and H(e) = jbe h(t)dt = -log(1-F(e)). The func-

tion h 1is the hazard rate and H 1is the cumulative hazard or log sur-
vival function. 1If the distribution is IHR, then h is monotone nonde-

creasing and H is convex. Let ﬁu be the K-S upper bound. If we

assume an IHR failure distribution, then a 952 confidence region for F

will consist of all IHR distributions bounded by ﬁu . It turns out that

there exists a maximal IHR distribution ﬁu among all distributions

» IHR

bounded by Fu : Let lﬁl=-log(1—Fu) and Hu,IHR be the greatest con-

vex minorant of H  (plotted Figure 4-10, then Fu,IHR =

If F! ' < F "<
R is IR and F' < F , then F <f

A 957 confidence region F < ﬁu

1- -H .
exp( Hu, » JHR

IHR is indicated in Figure 4-11 for the

data of Figure 4-9,
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b
1 5 10 15 6 20 25 30
Exposure (x 107)

Pigure 4-9.--Empirical CDF and 95% K-S upper bound; 7.5 KV
insulator pin, 5 mm fibers, Westinghouse data.
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Exposure (X 106)

Figure 4-10,--Empirical cwnmulative hazard upper bound, ﬁu » and
it greatest cowvex minorant R P
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) 1 | _l i 1

5 10 15 20 25 30

Pigure 4-11--95% confidence region for IHR failure dietribution
for data in Pigure 3-1.
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Note that Figure 4-11 is a much more accurate region, especlally
in the left tail. This accuracy was gained by assuming a more restricted
model, namely, an IHR failure distribution. For the previously consid-

ered exposure level of 105 fiber sec/m3, we are 952 confident the: ‘he
probability of failure is less than .0048. This is great improvement
over the other estimates.

4.4 Sensitivity of the model to estimated
parameters gri distributions

We have written a special simulation program designed to provide
fast and economical sensitivity analyses of the risk profiles obtained
as output of the GFRAP risk analysis. Moreover, this program follows a
modified simulation approach which yields statistically valid confi-
dence bounds on the risk profiles obtained. The program requires as in-
put the probability distributions of damage per accident at each of the
major airports being considered, and we used analytic approximations to
the empirical damage distributions reported by Arthur D. Little, Inc.
(ADL) in Kalelkar, et al. (1979). We have performed an extensive series
of sensitivity runs of the program, and of an additional computer prog-
ram written to provide partial analytic results when the analytic ap-
proximations just mentioned take the form of Lognormal distributionms.
This section describes the simulation program, details our efforts to
analy* _cally approximate the different airport damage dis:ributions, and

finally presents the results of the sensitivity runms.

4.4.1. The simulation program
For ease in handling simulation error (to be discussed in Section
5.1) we recommend the following procedure for the simulation:

Step 1: Generate by Monte Carlo methods the number of accidents
in a year.

Stey 2: Determine by Monte Carlo methods at which airport each
of the accidents generated in Step 1 occurs.
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Step 3: For each accident, determine the cost.
Step 4: Total the cost of all the accidents for the year.

Step 5@ Repeat the above four steps n times (yielding a
sample size of n years).

Step 6A: Compute the empirical national annual risk profile
directly for the sample of n years from the Step 4
values.

Step 6B: Compute the empirical national conditiinal (given
one accident) risk profile directly for the sample
of n years' worth of accidents from the Step 3

values.
We have followed this procedure in our specialized simulation program,
and will now g.ve the essential details of that program, referring

appropriately to the steps above.

In Step 1 we assume that the number of accidents in a year is a
random variable following a Po.sson distribution; thus only the mean
of that distribution 1s required as an input quantity. While the assump-
tion of a Poisson distribution seems to be generally accepted, and there
are some theoretical baser for it, other discrete distributions )r a more
complex relationship could be accommodated by the program without signif-
icant alteration. For example, the mean u of the Poisson distribution
could be treated as a random variable following a specified probability
distribution.

In Step 2 it is assumed that each accident occurs at or in thec

vicinity of one of a given number, say Na , of alrports., Each of these

N for airport 1 , that an

accidents occurring at one of the Na airports in fact occurs at airport

is characterized by a probability, say ¥

i . That is, Pi = Prob(accident occut at airport i | it occurs at one

of the Na airportg) . These probabilities pertain to every simulated

accldent, regardless of the airports .t which other simulated accidents

occur; i.e., the various accidents are treated independently with respect
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to vhere they occur. The numerical values of the P1 (i=1,...,Na) are

based on historical data (and possibly on future projections as well)
pertaining to the weather conditions and numbers of operations at the

variours airports.

Step 3 is the critical one and must be dependent on the simulation
model used to generate the random costs of accidents that take place at

each of the ‘a airports. Such a model must be rather complex in order

to account for various types and locations of accidents, CF dispersion
under local weather conditions, local types and quantities of housing and
industry, etc. Indeed, the development of such a model is one cf the most
significant aspects of the GFRAP, and both ADL and ORI Lave expended
considerable effort to this end. Our specialized simulation program
therefore requires the inclusion of subroutines that generate random
values of accident cost that are solely dependent on the airport con-

cerned. For the sake of future reference, let Fdi denote the CDF of

the damage (cost) per accident at airport 1 , i=1,...,Na . To test our

simulation program and to obtain sensitivity results we had to make some

speczific choices for the F What we did is described below in

di °
Section 4.4.2.

Steps 4 and 5 are self-explanatory and require no comment. Steps
6A and 6B are carried out by constructing, in each case, an aggregated
relative frequency distribution and then converting this to the aggre-
gated complementary cumulative relative frequency distribution that con-
stitutes the empirical risk profile. The uumber and size of the cells
used to construct the aggregated Jistributions are specified as imput to
the program. It would not be practical, for large sample sizes, to save
all the observed values because of their number and the comgitational
cost of ordering then (there are n observed values that enter into
Step 6A and approximately nu observed values that enter into Step 6B).
The first four moments of the empirical distributions are computed from

the actual observed values.
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4.4.2 Approximating the airport
damage distributions

The only information that has been available about airport dam-
age distributions is that contained in Table 10-1 of Kalelkar, et al.
(1979). Recent results of both ADL and ORI indicate -hat more accurate
and current damage distributions have associated with them significantly
smaller damage values. As such results were not available when our pro-
gram was developed and when our sensitivity runs were made, and are still
not readily available, we based our work on the empirical damage distri-
butions presented in ADL's Table 10-1. The distributions given there for
26 different airports are based on 300 values each generated by the ADL
damage simulation model.

For each of the 26 distribuytions, ADL's Table 10-1 provides the
mean, the standard deviation, the minimum and maximum observed wvalues,
and the following percentiles: 5th, 10th, 25th, 50th, 75th, 90th, and
95th. All the minima are zero, as are many of the 25th percentiles.
Using the given percentiles, we plotted all 26 distributions on log-lcg
paper in the form of risk profiles (complementary CDF's). One of these,
that for Washirgton, D.C.'s National Airport, is shown in Figure 4-12.
The right-hand portion of the curve is shown as a dotted line to empha-
size the fact that this portion is heavily dependent upon the maximum
value observed and saild maximum might vary significantly among samples
of size 300. (We associated with the maximum value a risk probability
of 1/300.)

We considered using piecewise-linear approximations to the observed
distributions in Step 3 of our simulation program, but decided against it
for two reasons. First, and most important, this would not provide us
with a convenient mechanism for performing sensitivity analyses through
controlled changes in the damage distributions used in Step 3. Second,
the smooth form of the curve in Figure 4~12 ( and of the ones for other
airports) suggests that a piecewise log-log or log-linear approximation
might be more appropriate. We therefore concentrated on analytic ap-

proximations to the observed damage distributions.
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Examination of the 26 empirical distributions in Table 10-1 of
Kalelkar g¢ al, (1979) shows them to be considerably skewed to the right;
the coefficients of varlation ramge from 1.33 to 3.40 and the ratios of
mean to median range from 1.32 to 133. We therefore considered several
families of distributions which possess the characteriastics of skewness
to right and nonnegativity (of the associated random variable). Such
families include the Weibull, Gamma, Pareto, and Lognormal families [see
Mann et gql. (1974)). Our choice of families to examine was partly in-
fluenced by the manner in which we decided to fit the empirical distri-
butions and verify the adequacy of the fit. We wanted to determine the
two parameters of the theoretical distribution from the mean and standard
deviation of the empirical one, and then to compare the two risk profiles.
This is difficult to do with the Weibull and Gamma distvibutions for the
following reasons: In the case of the Weibull distribution one cannot
find directly the two parameters as closed-form functions of the empirical
mean and standard deviation; a nonlinear equation involving the Gamma
function must be solved. 1In the case o° the Gamma distribution one cannot
obtain the CDF in closed form so calculation of the theoretical risk pro-
file is extremely difficult.

Both the Lognormal and Pareto distributions fit our computational
requirements, and examination of the 26 corresponding Lognormal risk
profiles showed many of them to fit the empirical risk profiles reason-
ably well. The Pareto distribution was tried for several cases but did
not fit quite as well as the Lognormal.

For the purposes of testing the simulation program we therefore
decided to use Lognormal distributions with means and variances equal to
those of the empirical distributions. Figures 4-13 through 4-21 show a
representative selection of the corresponding risk profiles--the ADL

empirical ones and the Lognormal ones used to fit them.

We did not close the door on attempts to fit the empirical distri-
butions; as a next step we examined the possibility of fitting the empir-
ical distributions by mixtures of Lognormal distributions. That is,
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instead of approximating the empirical CDF ﬁdi

Lognormal CDF in » We approximated it by the convex combination of

for airport i by a

Lognormal CDF's

L
q,.F
h tfug
where each inj i
integer such as 2 or 3 (or even 1), the q1j are positive, and zj qij =

is a Lognormal CDF, each I, 1s a small positive

1 . A difficulty with this approach is the lack of a clear criterion to

use in choosing Ii , the q1j , and the F Even with a clear

i °
criterion, the computational effort would be considerable. There is no
doubt, however, that decidedly better fits could be obtained this way.
Figures 4~22(a) and 4-22(b) show fits to the Philadelphia airport risk
profile by a single Lognormal and by a mixture of two Lognormals, re-
spectively; the parameters in the case of the mixture were found heu-
ristically. The improved fit is readily apparent. Figures 4-23(a) and
4-23(b) show similar fits to the Los Angeles airport risk profile.

An interesting result is the following: Let F be the national
conditional (given one accident) CDF whose corresponding risk profile is
estimated in Step 6B of the specialized simulation program. If each CDF

Fdi is assumed to be Lognormal, say in , then
N
F = 121 PFo o
so that F 1s a mixture of Lognormals. If instead each F is

di
assumed to be the mixture of Lognormals zj qijFlij » then
Na Ii

F = j z Pq,.F ’
g=1 g=1 13U

so that F 18 again a mixture of Lognormals.
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Because the empirical distributions givem in Table 10-1 of
Kalelkax, et al. (1979) were kmown to be outdated, we decided against
any further attempt to fit them with analytical distributions. We
decided to use 26 Lognormal distributions with the game means and vari-
ances as those of the empirical distributions as the basis of our sen-
sitivity analyses. We did, however, investigate the effect of replacing
the Lognormal distributions by mixtures of Lognormal distributioms.
Exactly what was done will be detailed below, but the results may be
summarized by the statement that replacing the Lognormal distributions
by mixtures of Lognormal distributions had a negligible effect on the
national conditional and annual risk profiles obtained, even though the
mixture of Lognormals yields a better fit of the individual airport dam-
age distributions.

4.4.3 The sensitivity analyses

Following the ADL analyses we used Na = 26 and used for the Py

the values given in the last column of Table C-4 of Kalelkar et al.
(1979). PFor our base case we chose the 26 Lognormal distributions to
have means and standard deviations equal to those of the empirical dis-
tributions generated by ADL, and we set ® = 2.6 . This parameter u

is the expected number of accidents in a year, and the value of 2.6 cor-

responds to the agreed-upon projection for 1993.

Because of the assumption of Lognormal distributions of damage
per acclident at the various airports, the national conditional risk
profile (given one accident) is the complementary cumulative distribu-
tion function (CDF) of a mixture uf Lognormal CDF's. That is,

N
Za

F = p.F. ., »
(=1 iy

where Fki is the Lognormal CDF¥ of damage per accident at airport 1

and R = (1-F) is the national conditional risk profile (given one
accident). It is thus possible to compute the values of the risk
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profile R exactly with the aid of a table or computer program that pro-
vides CDF values of the standard normal distribution. (This is not true
for the annual risk profile, however.) A separate computer program was
thevefore written to compute R this way, and it was used in adddition
to check the correspoading risk profiles generated by the Monte Carlo
simulation program (which generates both risk profiles).

The annual risk profiles for various semsitivity runs were gen-
erated by the simulation program; im each case the year 1993 was simu-
lated 4000 times.

We performed three separate types of sensitivity analyses. In
the first, we varied the means of the Lognormal distributions of damage
per accident at the various airports and kept the standard deviatioms
the same. 1In the second, we varied the standard deviations of the Log-
normal distributions of damage per accident at the various airports and
kept the means the same. In both cases all 26 means or standard devia~
tions were changed by the same percentage. In the third type of sensi-
tivity analysis we varied yu , the mean number of accidents in a year.
This third type of seraitivity amalysis affects the annual risk profile
but not the national conditional risk profile (given ome accident),
whereas the first two types affect both risk profiles,

The results are shown in Figures 4-24 through 4-28. Figures
4-24 and 4-25 show the national conditional risk profiles R for various
changes in the means (Figure 4-24) and standard deviations (Figure 4-25)
of the distributions of damage per accident at each airport. Each risk
profile is identified by the ratio of the value of the parameter (mean
or standard deviation) to its value in the base case. Tables 4-3 and
4-5 show numerically some of the results shown graphically in Figures
4-24 and 4-25; no exact values are given since they are not likely to be
truly meaningful, but instead ratios are given to indicate the effects
of the change in means or standard deviations of the distributions of
damage per accident at each airport. Tables 4~4 and 4-6 show the ratios

of the means and standard deviations of the national conditional risk
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SENSITIVITY OF THE NATIONAL CONDITIONAL RISK PROFILE R TO

TABLE 4-3

CHANGES IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS

KEY: All entries in the table are ratios of
(1) the values obtained when the means
are changed to (2) the corresponding
values for the base case. The ratio of
airport damage distribution mean to
that of the base case 18 r and d 1is

a numerical damage value.

T-419

(a) Damage Value d

P{Damage > d} r = 0.5 r = 1.5

r=2.0 r=3.0

3 x107t .31 1.87 2.69 4.06
1 x 107! .45 1.53 2,07 2.98
3 x 1072 .52 1.30 1.60 2.06
1 x 1072 .62 1.21 1.39 1.63
3 %1073 .75 1.13 1.20 1.31
1 x1073 .84 1.07 1.10 1.12
3 x 107 1.00 1.06 1.06 .88
1 x 107 1.04 .91 .81 .69
3 x 1072 1.20 .83 .72 .60
(b) P{Damage > d}

Damage Value d r=0.5 r=1.5 r= 2.0 r = 3.0
.03 x 10° .50 1.36 1.53 1.65
1 x 108 .42 1.65 2.21 2.81
.3 x 108 .42 1.76 2.76 4.33

x 108 .46 1.53 2.21 4,00
x'10% .65 1.30 1.50 1.95
10 x 108 1.07 .79 .48 .23
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TABLE 4-4

T-419

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK DISTRIBUTION TO
CHANGES IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS

KEY

All entries in the table are ratios of
(1) the values obtained when the means
are changed to (2) the corresponding
values for the base case. The ratio of
atrport damage distribution mean to
that of the base case is r .

Mean of the Natiomnal

Standard Deviation of the

Ratio r Conditional Risk National Conditional Risk
Distribution Distribution
.33 .33 .97
.50 +50 .98
.67 .67 .98
1.5 1.50 1.04
2.0 2.00 1.09
3.0 3.00 1.23
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TABLE 4-5

SENSITIVITY OF THE NATIONAL CONDITIONAL RISK PROFILE
R TO CHANGES IN THE STANDARD DEVYATIONS OF THE
AIRPORT DAMAGE DISTRIBUTIONS

KEY: All entries in the table are ratios of
(1) the values obtained when the stan-
dard deviations are changed to (2) the
corresponding values for the base case.
The ratio of airport damage distribution
standard deviation to that of the base
case is r and d is a numerical dam-

age value.

T-419

(a) Damage Value d

P{Damage > d} r=05 r=20 r=50 re=10.0
3x 10t 1.23 .60 .35 .19
1x 107t .92 .84 .65 J44
3 x 1072 .79 1.06 1.04 .89
1 x 1072 .72 1.33 1.56 1.44
3 x 1073 .60 1.49 2,02 2.23
1x 1073 .52 1.64 2.59 3.12
3 x 1074 .47 1.87 3.41 4.53
1x 1074 .41 2.03 4.14 6.04
3 x 107 .38 2.38 5.48 8.33

(b) P{Damage > d_

Damage Value d r=20.5 r=2.0 r=5.0 r = 10.0
.03 x 10° 1.27 .76 .55 .41
1 x 108 1.30 .74 .54 .40
.3 x 108 .86 .85 .68 .54

x 109 .51 1.34 1.3 1.19
x 10° .21 2,13 2.99 2.99
10 x 108 .03 3.86 8.48 10.98
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TABLE 4-6

SENSITIVITY OF THE RATIONAL CONDITIONAL RISK DISTRIBUTION
TO CHANGES IN THE STANDARD DEVIATIONS
OF THE AIRPORT DAMAGE DISTRIBUTIONS

KEY: All eatries in the table are ratios of
(1) the values obtained when the stan-
dard deviations are changed to (2) the
corresponding values for the base case.
The ratio of airport damage distribution
standard deviation to that of the base
cagse is r .

T-419

Mean of the Natiomal Standard Deviation of the

Ratio r Conditional Risk National Conditiomal Risk
Distribution Distribution
0.5 1.0 55
2.0 1.95
5 - 0 PN ¥ ] 4 ® 84

10.0 1.0 9.68

17 -
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profile R to those of the base case when the indicated changes are
made in the means (Table 4-4) or standard deviations (Table 4-6) of the
individual airport damage distributiouns.

Figures 4-26 and 4-27 are comparable to Figures 4-24 and 4-25,
respectively, but are for the amnual risk profile, call it S , instead.
Tables 4-7 through 4-10 show the results numerically, and are comparable
to Tables 4-3 through 4-6, raespectively.

Figure 4-28 shows the changes in the annuai risk profile S as
p changes; note that increazing values of p produce increasingly
conservative annual risk profiles as defined later. Table 4-11 shows
numerically some of the results shown graphically in Figure 4-2 ; again,
only ratios are given. Table 4-12 shows the ratios of the means and
standard deviations of the annual risk profile S to those of the base
case when the indicated changes are made in u .

4.4.4 Investigation of the effect of
approximating the airport
damage distributions by
lognormal distribution:

As indicated above, the empirical individual airport damage dis-
tributions are better fit by mixtures of Lognormal distributions than
by a single Lognormal distribution. We wished to see whether using such
better approximations to the airport damage distributions would signifi-
cantly alter the results of the sensitivity analyses. It was not prac-
tical to carry out the process of fitting all 26 empirical distributions
by mixtures of Lognormal distributions, so we decided to proceed differ-
ently. We assumed, in effect, that there are only 13 airports, all of
vwhose damage distributions can be fit by mixtures of two Lognormal dis-
tributions. This yields 26 Lognormal distributions in all, which we
took to be the ones utilized for the base case described above in Sec-
tion 4.4.3. That base case becomes, in terms of the 13 fictitious air-

ports, the most exact representation available, in that each of the
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TABLR 4-7

SENSITIVITY OF THE ANNUAL RISK PROFILE S TO CHANGES
IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS

KEY: All entries in the table are ratios of

(1) the values obtained when the means
are changed to (2) the corresponding
values for the base case. The ratio of
si.port damage distribution mean to
caat of the base case is r and d is
a ~umerical damage value.

T=419

P{Damage > d} r=05 r=1.5 r=20 1r=30

(a) Damage Value d

3x 101 .38 1.75 2.52 3.87

1x10} .46 1.54 2.02 2.89

3 x 1072 .59 1.35 1.76 2.45

1 x 1072 .69 1.22 1.53 1.59

3 x 103 .79 1.08 1.26 1.48

1x103 .99 1.06 1.15 1.27
(b) P{Damage > d}

Damage Value d r=0.5 r=1.5 r=2.0 r = 3.0
.03 x 10° .76 1.10 1.13 1.13
1 x10° .52 1.17 1.26 1.38
.3 x 10° .41 1.53 1.97 2.56

x 10° .34 2.11 3.32 5.92
x 10° .54 1.46 3.34 7.80
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TABLE 4-8

SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO CHANGES

IN THE MEANS OF THE AIRPORT DAMAGE DISTRIBUTIONS

KBY: All entries in the table are ratios of
(1) the values obtained when the means
are changed to (2) the corresponding
values for the base case. The ratio of
airport damage distribution mean to
that of the base case is r .
Standard Deviation
Ratio r mﬁ:t‘ﬁb‘:“t“&l of the Annual Risk
Distribution
<33 .33 .92
.50 .50 .93
.67 .67 .95
1.5 1.50 1.10
2.0 2.00 1.22
3.0 3.00 1.53
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TABLE 4-9 -

SENSITIVITY OF THE ANNUAL RISK PROFILE S8 TO
’ CHANGES IN THE STANDARD DEVIATIONS OF
THE AIRPORT DAMAGE DISTRIBUTIONS

KEY: All entries in the table are ratios of

(1) the values obtained vhen the stan-
dard deviations are changed to (2) the
corresponding values for the base case.
The ratio of airport damage distribution
standard deviatioan to that of the base
case is r and d is a numerical dam-
age value.

T-419

P{Damage > d} r=0.5 r=2.0 r=5.0 r = 10.0

(a) Damage Value d

- W W e W
X X X X X X

-1

10 1.02 71 .47
107! .89 .95 .78
1072 .81 1.17 1.17
1072 .72 1.31 1.52
1073 .62 1.58 2.05
1073 .54 2.00 4.06

.34
.62
1.10
1.71
2.58
6.00

Damage

(b) P{Damage > d}

Value d r =0.5 r=.0 r=5.0 r = 10.0

.03
.1
.3

x 108 1.10 .95 .74
x 10% 1.16 .81 .61
x 10° 1.03 .76 .59
x 108 .85 1.12 1.00
x 10° .18 2.00 2.47

.61
1)
47
.85
2.62
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TABLE 410

SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO
CHANGES IN THE STANDARD DEVIATIONS OF
THE AIRPORT DAMAGE DISTRIBUTIONS

KEY: All entries in the table are ratios of
(1) the values obtained when the stan-
dard deviations are changed to (2) the
corresponding values for the base case.
‘The ratio of airport damage distribution
standard deviation to that of the base
case i1s r .

Meen of the Annual Standard Deviation

Ratio r of the Annual Risk
Risk Distribution Distribution
0.5 1.0 .61
2.0 1.0 1.87
5.0 1.0 4,58
10.0 1.0 9.14
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TABLE 4-11

SENSITIVITY OF TH3 ANMUAL RISK PROFILE S TO CHANGES
IN THE EXPECTED NUMBER OF ACCIDENIS IN A YEAR

KEY: All entries in the table are ratios of
(1) the values obtained when the ex-
pected mumber of accidents in a year is
changed to (2) the corresponding values
for the base case. The ratio of the
expected mumber of accidents to that of
the base case s r and 4 is a numer-

ical damage value.

T-419

(a) Damage Value d

P{Damage > d} r = 0.50 r = 0.67 r=1.5 r=2.0
3 x 1071 .39 .61 1.51 2.12

1 x 107t .53 .67 1.36 1.83

3 x 1072 .59 .73 1.29 1.67

1 x 1072 .62 .74 1.23 1.52

3 x 1073 .61 .76 1.19 1.48
1x103 .66 .81 1.25 1.47

(b) P{Damage > d}

Damage Value d r = 0.50 r = 0.67 r=1.5 r= 2.0
.03 x 108 .69 .82 1.11 1.20

.1 x 108 .54 .70 1.23 1.38
.3 x 128 .45 .51 1.52 1.97

x 10° .40 .55 1.69 2.85

x 109 .28 .49 1.62 2.75
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SENSITIVITY OF THE ANNUAL RISK DISTRIBUTION TO CHANGFS

TABLE 4-12

IN THE EXPECTED NUMBER OF ACCIDENIS IN A YEAR

KEY: All entries in the table are ratios of
(1) the values obtained when the ex-
pected number of accidents in a year is
changed to (2) the corresponding values
for the base case. The ratio of the
expected number of accidents to that of
the base case is r .

Standard Deviation
Ratio r ”““mk ‘;)isil;eibmution of the Annual Risk
Distribution
0.50 50 .71
0.67 .67 .82
1.5 1.50 1.22
2.0 2.00 1.41
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13 damage distributions is represented by a mixture of two Lognormal
distributioans.

We then approximated each of the 13 damage distributions by a
single Lognormal distribution. To do this we first randomly combined
the 26 Lognormal distributions to obtain 13 pairs. For each such pair
we found the first two moments of the mixed distribution (with mixing
probabilities proportional to the appropriate Py ), and then approxi-

mated the mixed distribution by a single Lognormal distribution with
the given first two moments. This yielded Lognormal approximations for
the damage distributions at the 13 fictitious airports.

Using the 13 Lognormal distributions we exercised ti.e two computer
programs discussed above for the base case and also for all of the sensi-

tivity analysis runs previously described for the case of 26 airports.

The results are ghown in Figures 4-29 through 4-33, which corre-
spond to Figures 4-24 through 4-28, respectively. Not only do they cor-
respond, but in each of the five cases the two sets of curves are al-
most carbon copies. That is, with respect to the scenario of 13 air-
ports, approximations of the 13 airport damage distributions by (a)
Lognormal distributions and by (b) mixtures of two Lognormal distribu-~
tions produce alwost exactly the same results. This certainly lends
credibility to the validity of the sensitivity analysis results obtained
for the scenario of 26 airports. Those results will now be discussed.

4.4.5 Discussion of the results
of the sensitivity
analyses

This discussion is divided into three parts, corresponding to
changes in (a) the means of the airport damage distributions, (b) the
standard deviations of the airport damage distributions, and (c) the
expected number of accidents in a year. It is based on Tables 4-3
through 4-12,
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Tables 4~4 and 4-8 show that vwhen the means of all the airport
damage digttibutions are changed in the same proportion, then the means
of the national conditional and annual damage diatributions are changed
in that séme proportion but the standard deviations of these two distri-
butions are changed to a much smaller degree. The sténdard deviation
of the annual damage distribution is changed somewhat more than that of
the national conditional damage distribution. With respect to the two
risk profi’ s, Tables 4~3 and 4-7 can be summarized hy stating that the
damage value (for a given exceedence probability) and the exceedence
pr-bability (for a given damage value) are both changed in roughly the
same propoitidn as the change in the means of the airport damage dis-
istributions.

Tables 4~6 and 4-10 show that when the standard deviations of all
the airport damage distributions are changed in the same proaportion,
then the means of the two damage distributions are unchanged, whereas
both their standard deviations are changed in almost (but slightly less
than) that same proportion. With regard to the two risk profiles,
Tables 4-5 and 4-9 indicate that, in general, the damage value (for a
given exceedence probability) and the exceedence probability (for a
given damage value) are both changed in somewhat less than the same
proportion as the change in the standard deviations of the airport
damage distributions.

A change in p , the expected number of accidents in a year, has
no effect, of course, on the national conditonal damage distribution,
but Table 4-12 shows that it changes the mean of the annual damage dis-
tribution in the same proportion and the standard deviation of this
distribution in a smaller proportion ( the square root of the previous
one). Table 4~11 shows that the effect on the annual risk profile is
roughly proportional to the change in .

In overall summary, then, our sensitivity analyses show that
changes in the means or standard deviations of the airport damage dis-

tributions or in the expected number of accidents in a year produce
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roughly proportioual changss in the natiomal conditional aad annual risk
profiles. Since ¢hanges in these tisk préfiles of less thén a factor of
S.are ptobably not deenied vary slgnificant, it seems fair to say that
the risk ptofiles are not’ ovarly ‘sensttive to the changes that were
fnvestigated.

5. Simulation Modél Des;gg and Treatment
of mlﬁ_lglmr - :

Thg_th;td major qourcé of error in the risk analysis modeling
stems Etﬁﬁ samﬁ@iqg error in exercising the simulation. Providing the
simmlation is ddﬁe properly, statistical techniques are available to
treat this type of error.

5.1 Simulation model design

One current simulation model generates, by Monte Carlo simulation,
a conditional (given an accident) risk profile for each airport. Denot-

ing the CDF generated for airport i by Fil)(x) and letting Py

represent the conditional probability that am accident occurs at airport
i , given that it happens at some airport in the U.S., then the condi-
tional (given an accident somewhere in the Umnited States) risk profile,

denoted by l-F(l)(x) , 18 obtained from

D = » F{l)(x) + p,Fy D + ... i (x) .

1 * Py6¥a6

Even assuming that exact confidence bounds could be found for the
(1)(x) s and that the pi 8 were exact and not estimated, it would

still remain a most difficult (if at all possible) task to obtain exact

confidence bounds on F‘l)(x) .

Further, to get the unconditional national annual risk »rofile,

the F(l)(x) are convolved as follows:
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Fix) = p(0) + PPN (@ + p@F P () + ... .

where F(n)(g) is the n-fold convolution of F(l)(x) with itself and
P(i) 1is the probability of 1 accldents in a year. Even assuming the
P(i) are exzact and that confidence bounds could somehow de determined

for P(l)(x) » the convolution procedure makes it very difficult to ob-
tain confidence bounds on F(x) (especially if exact bounds are desired).

In order to take advantage of the available statistical theory
for calculating palid confidence bhounds, it is necessary to modify
the Monte Carlo simulation procedure sketched above. As indicated, two
major problems which prevent the use of valid statistical procedures
in the above modeling design are (1) probabilistic mixing of iadivid-
uval airport conditional (on one accident) risk profiles to get a national
conditional risk profile, and (2) convolving the national conditiomnal
risk profile to obtain the unconditional national risk profile. The mix-
ing and convolving of CDFs (or complementary CDFs such as the risk pro-
files) invalidate the available statistical theory.

To get around these problems, we suggest the modified simulation
procedure of Section 4.4.1, which we repeat here:

Step 1: Generate by Monte Carlo methods the number of accidents
in a year.

Step 2: Determine bv Monte Carlo methods at which airvort each
of the accidents generated in Step 1 occurs.

Step 3: For each accident, determiane the cost.
Step 4: Total the cost of all the accidents for the year,

Step 5: Repeat the above four steps n times (yielding a
sample size of n years).

Step 6A: Compute the empirical national annual risk profile

directly for the sample of n years from the Step
4 values.
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Step 6B: Compute the empirical national conditional (given one
accident) risk profile directly for the sample of n
years' worth of accidents from the Step 3 values.

In this way, the statistical theory discussed in the following
Sections can be applied to both the national conditional risk profile
and the mnconditional national annual risk profile. This may result in
larger sample sizes than presently being used, but the advantage is that
the sample sizes required for the amount of confidence and precision
desired can be computed in advance. The following sections illustrate
these computational procedures. ’

5.2 Pointwise confidence bounds

The following methodology allows for confidence bound statements
at a single point only.

5.2.1 Binomial bounds on the risk
for a single value

If it is desired to obtain bounds on the risk for a particular
value xo » then the binomial distribution can be used to obtain well-

accepted approximate bounds. Assuming the number of independent simu-
lation runs, n , is large enough for the normal approximation to the
binomial ([nF(xo)] and n[l—F(xo)] should be > 5), approximate

100(1-a)% confidence bound are

~ éa 2 KN ~
1-F (xg) + _,;f;' VF ) 0-F_(x)).

Note that the band width of the bound gets smaller for large x, ,

which is the property we desire; but this confidence statement is good

at a single point %0 only, and not for all x

0 simul taneously.

1f the normal approximation to the binomial is not adequate (which
is probably the case for the sample sizes anticipated and the small tail

probability of interest) then either the Poisson approximation to the
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binomial or the exact binomial itself must be used. For example, sup~
poge r values greatey than x, are observed in the sample of size n .

,T@en, wae desire to find the largest value of p for a hinomial distribu-
tion such that P(Xsr l_n,p)‘; @ , vhere X is a binomial random vari-
able with parameters n and p , and 1-0 is the confidence level de-

sired. Denoting this value by a s & one sided 100(1-a)Z confidence
interval estimate of R(xo) is (0,3) . As an illustration, let us

assume that in n simulation runs 0o values greater than x, are ob-

served. fﬁen. r=0 and

P(XO | n,p) = P(x=0 | n,p) = (-P)° = @o;
hénce,
B - l—alln .

For values of r>0 numerical search procedures would be necessary to

find p .

5.2.2 Nonparametric tolerance
limits

The prediction approach using tolerance limits as described here

is also distribution-free. Let X'1) xr(‘z) 1(1“)

R be the order
n

statistics from a sample of n observations from the distribution with
CDF F(x) . The problem is to predict the (n+l)st observation, Xh+1 ’
which occurs in the future. Intervals of the form

(r) (s)
L T

are used [see Aitchison and Dunsmore (1975)]. There are two measures of
precision: mean coverage and guaranteed coverage (tolerance limit)

intervals.
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5.2,2.1 Mean coverage: Considering that

8T

(x) (a) &
PR SEn<% ol °

ntl

is follows that “on the average" (hence the name mean coverage) the in-
% (s)
n

terval ( » X

will cover the next observation with a proportion
(s-r)/(n+l) of the instances when the procedure is repeated. Note that

P(X > X;n) = 1/(n+l) . Care must be taken in applying this procedure;

ntl
for example, one possible misinterpretation would be to look at the data,

(300)
300

The problem is that

p(x <o | xfl“)-m) # P(xn s xl(l“)) .

The left-hand side equals P(xn+1<m) = F(m) and is not distribution-~

note that X = $9M and thee conclude that P(Xn+1 > $9M) = 1/301 .

free.

5.2.2.2 Guaranteed coverage (tolerance limits): In this casc two
values, o and Yy , are specified, where y 1is the probability of cov-
erage and 1-0 18 the guarantee or ccifidence. The desired interval

satisfies
(s) ), . 1. .
P'F(Xn ) - F(Xn ) Y‘ = 1l-a .

Thus we are 100(1-a)?Z confident that 100y%Z of the population will

fall in (X(r), X(s)) . The probability

P

rl®) - rx() - v(

is distribution-free and can be expressed in terms of an incomplete beta
function. See Aitchison and Dunsmore (1975), David (1970), and Walpole
and Myers (1978).
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5.2.3 An upper binomial bound
for R(xo) , for a

fixed %,

Using a normal approximation to the binomial, the half-width of
such a sonfidence region will be

z JR(XO) [1-Rex )]
o n

to achieve 100(1-a)Z confidence. In the tails this will be approxi-

mately za\‘R(xo)/n - If we are looking at x,

whic:. correspouds to a

tail probability of 10-d and wish to be 100(1-a)Z confident that our

estimation error is also less than 10“d , then we must approximately
satisfy

za\’lo.d/n = 109,

For example, if we want to be 997 confident when the tail probability is

1\/10"/11 =10% or

2.326/Va = 10 2 , which implies /& = 232.6 ; and hence n = 54,103 &

of the order of 10-4 , them n satisfies =z 0

5.4><104 . In general, to make 100(1-0)Z confidence statements about

R(xo) when it is of the order of 10-d , one needs n = zilod chser-

vations, for fixed Xg + If it turns out that nR(xO) is likely to be

less than five--so that the normal approximation might not be valid--
then the exact binomial distribution would have to be used, necessitating

a8 numerical search procedure to find n .
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5.2.4 Mean coverage prediction
intervals

If a sample of size n is drawn and

X, @y
n n o

are the order statistics, then the prediction interval (Xir), xﬁs))

has mean coverage of the (n+l)gt observation equal to (s-r)/(ntl) .
An interval of the form (O, xﬁ") has mean coverage equal to n/(nt+l) .

d

Thus, in order to get mean coverage of 1 - 10°, approximately 10d

observations are required. Hence for a probability of 10_4 for the

next observation exceeding the largest of the n samples, n must

be 104 .

The interpretation of mean coverage is that if this procedure 1is
used many times the resulting intervals (one for each repetition of the
procedure) will cover the (n+l)gt observation a proportion of times
equal to the mean cuverage or, equivalently, will not cover it a propor-

tion equal to one minus the mean coverage.

5.2.5 Guaranteed coverage prediction
(tolerance) intervals

We are interested in distribution-free prediction intervals of

the form (O, X;s)) which satisfy

p(rx(®) 2 v} = 1-a

for a specified coverage value Yy and guarantee probability 1-o
(this is a one-sided version of the type discussed in Section 5.2.2.2,

Here F(Xss)) has a beta distribution with parameters s-1 and n-s

with density
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n! s-1 n-g
fo® ° Ehigare @ .
n

It is asymptotically normal with mean s/(n+l) and variance

s(n—s+1)/[(n+1)2(n+2)] e If s/n=p, i.e., Xﬁs) is the pth sample

fractile, then F(x:s)) is asymptotically normal (p, [p(1-p)]/n) .

Consider the case of using ‘O, xé“)) as a guaranteed coverage
prediction intervsl; then

ﬂﬂé”);yl = 1- Q" = 10
and

n= logguz
log(y) °

The sample sizes required to achieve preassigned values of 1l-q and Y
are given in Table 5-1.

TABLE 5-1

SAMPLE SIZES FOR A ONE-SILED TOLERANCE LIMIT

.99  .995 .999 .9995 .9999

<95 299 598 2994 5990 29956
.99 458 919 4603 9208 46049
. 995 527 1057 5296 10594 52980
«999 687 1378 6904 13812 69074

Thus, using this procedure, if we wish ro deal with tail probabilities

of 10-4 (or coverage of .9999) with 997 guarantee, we need 46,000
observations. Tables similar to Table 5-1 may be found in Walpole and
Myers (1978), page 550,
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A misuse of the above procedure that is tempting but not correct
18 the following. Suppose a particulatr break-off point such as $10M
annual cost is of interest. Take a sample of size n and note the

smallest order statistic that is greater than 10M, calling it xﬁ“) .

Using this, compute P{r(xﬁs))‘; YQI for some desired vy, , and obtain
a guarantee probability l-uo . Then, make the statement that (0,$10M)
has a 100(1-u)% guarantee of coverage of IOOYOZ . The above is not

justified; it is called data smooping.

5.3 Simultaneous confidence bounds

The following methodology allows for simultaneous confidence
bound statements over the entire risk profile.

5.3.1 Kolmogorov-Smirnov (K-S)
type confidence bounds

The K-S statistic gives the maximum deviation betweeu an empirical
and a true CDF and is denoted by Dn » 80 that

D = sup | Fn(x) - F(x)| .
X
Durbin (1973), Hoel, Port, and Stone (1971); Dixon and Massey (1969);
and Breiman (1973) include discussions of this statistic, both for test-

ing HO: F = Fo and for constructing simulataneous confidence bounds on

the unknown F . Dixon and Massey (19€9) refer to the K-S statistic as

a d-etatistic. Lilliefors (1969) treats the case of testing H,: F =

0
exponential using a modified K-S statistic where the mean of the hypoth-
sized exponential is estimated from the sample.

Confidence bounds using Dn can easily be obtained by noting that

Pe{|f 0-F)| <4, ,(m) = 10, (5.1)
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where du/2(n) is tabulated and depends on the level of confidence de-
sired (1-q) and the sample size (n). Rewriting 5.1 we have

Pr{-d, () < ¥ -F) <4 ,@} = 10 ,
or

Pri1~F (0)-d ), () < 1-FGO < 1-R () = 1,

yielding as the lower and upper confidence bound curves l-fn(x) t
da/2(n) + Denoting the risk profile l-ﬁn(x) by ﬁh(x) » we have
(n) .

R +
confidence bounds of Rh(x) i dm/2

One problem is that the upper confidence bound approaches a con-

stant value for small values of ﬁn(x) since d_,,(n) 1is a fixed con-

0/2
stant added to the empirical value ﬁh(x) . A plot of the K-S bound

would look 1like that shown in Figure 5-1.

Risk

Damage

Figure 5-1.--K-5 bounds.

It should be pointed out that the type of statement we can make
from such bourds is the following:
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"With confidence 100(1~a)Z , the probability of damage exceeding

_A "
%, lies between 1 !n(xoljj:dalz(n) for all values Xq o

This is an extremely powerful statistical statement.

5.3.2 Upper K-S baunds for the risk profile R(x) .

We would generally be interested in only one-sided confidence
bounds, namely, the upper bound on the risk profile, Since sample si-es
are large, the asymptotic theory can be used--in which case the one-
sided critical values when using the K-S statistic are as shown in

Table 5-2. Thus, for example, P{R(x) - R (x) < 1.52//} = .99 , and
to deal with tail probabilities of the order of 10’4 with 99% confidence
requires a sample satisfying

.52 107%  or n=2.3x10%.
/n

TABLF 5-2

SAMPLE SIZES FOR UPPER K-S
CONFIDENCE BOUNDS

Confidence Level Half-Width

.95 1.22/ va
.99 1.52/ va
.995 1.63/ va
.999 1.86 / va
.9995 1.95/ /a
.9999 2.15/ v/

Some other sample sizes required to obtain various confidence levels in

probabilities of certain orders are given in Table 5-3.
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TABLE 5-3

SAMPLE SIZES FOR VARIOUS TAIL PROBABILITIES AND CONFIDENCES

Tail Probability of Interest
Confidence 10—2 10-3 10-4 10-5
.95 1.5x0%  1.5x0%  1.5x0®  1.5x10!0
.99 2.3x10°  2.3a0%  2.3x10®  2.3x0'°
.995 2.700°  2.7x0%  2.7x08  2.7x10%
.999 3.5x10%  3.5x0°  3.5x0®  3.5x10%0
.9995 3.8x10*  3.8x0°  3.8x0®  3.8x10%°
.9999 4.6x10°  4.6x0®  4.6x10° 4.6x10l

Roughly speaking, to be able to make confidence statements about prob-
abilities of the order of 10_d s the width of the band must also be of
that order, 10-d . To achieve a one-sided K-S bound of half-width
10-d requires approximately 102d observations.

5.3.2 Modified Ko'mogorov-

Smirnov co.. idence
regions

One problem with K-S bounds is that for very small values of
risk, the term da(n) overwhelms ﬁn(x) . It seems desirable to ob~

tain confidence bounds such that da(n) decreases with increasing =x
so that one obtains a picture such =8 that shcwn in Figure 5-2. There
are some generalizations of the K-§ statistic which might help in this
egard. The Anderson-Darling (A-D) statistic can have the property of
the bounds coming "in" at large (and small) values of x but these
bounds are only approximate. Discusaion of the A-D statistic may be

found in Anderson and Darling (1952), and Durbin (1973). Another
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geperalization of K-S, called the generalized D' statistic, has the
bounds partially coming in at the ends--a sort of situation between
K-S and the approximate A-D [see, for example, Dempster (1959) and
Dwass (1959)].

Risk

Damage

Pigure 5-2.--Desired bounds.

In this section we investigate a method of constructing a simul-
tancous confidence region which is narrower in the right tail. This
enables one to be more confident in the right--tail probabilities at the
expense of less confidence in the central and left-tail probabilities.

Let R(*) be the cumulative risk function: R(x) = P{risk exceeds
x} . Let ¥(x) =1 - R(x) be the CDF of the risk; R 1is estimated by
the empirical risk function ﬁh ,» based on a simulated sample of n

accidents (or n years).

It is desired to estimate R with a confidence region based upor
R.n » Or eqrivalently F with a confidence region based on Fn « Be-

cause we are primarily interested in the right tail, we would like a
region which is narrower in the tail. A very desirable region would be

- 104 -



T-419

R<R +pR , (5.2)
where >0 . If g=9 , we are one order of magnitude wide. Unfor-
tunately it is impossible to get a region of the form (5.2). Suppose
Xl(‘n) is the largest of the n simulated values, then ﬁn(x) =0 for
(n)

x> xn ; but P{R(X(n) =0} <1 and if R is continuous P{n(x(“)

0}) =0. Thus P{R(x) < Rn(x) + BRn(x) for all x} =0 .

However, it is possible to comstruct a confidence region of the
form

R < Rh + BRn +a, (5.3)

where typically we might choose = 10-2, 10-3, or 10-4 and 148 =

v/19, 10, /100; i.e., %, 1, or 1% orders of magnitude. The equivalent
region for F =1 - R would be

- {1—? < (-F) (4) + a} - {F <3 +B F 4+ —5} .

P{R(x) < ﬁn(x) + BRn(x) + a, for all x} = {F (x) < = T +B F(x) +%%} .
(5.4)

By the standard distribution-free argument, (5.4) is indepenaent of F ,
so for computation we can let F(x) = x , the uniform [0,1] distribu-
tion. Let ﬁn(') be the empirical distribution function of uniform

order statistics, then
~ A "~ 1 o
P{R < Rn + BRn + a} = P{Un(X) g ¥ + ﬁg, for all x}
= P{Un(x) <bx + a, for all x}

= Pn(a’b) ’ (5.5)

wvhere b = 1/(1+8) and a = (atB)/(1+8) . The probability (5.5) can
be calculated. Explicit formulae for it are given in Durbin (1973).
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It is possible to find the sample size n which achieves

o 1
v = Pn(m ’ 1+B)
for various combinations of a, B, Y, e.g., y=.01, .05 ; 148 = /IO,

10, Vi00 ; 0910-2, 10-3, 102 . This enables one to take a large
enough simulated sample to achieve any desircd precision in a simulta-

neous confidence region.

To illustrate the usefulness of the above modified K-S regionm,
we consider an example. Figure 5-3 shows a typical simulated risk pro-
file. If this is based on a sample of 500 observationms, then the usual
K-S 952 confidence region is

R < R+122 _ R4 .05456 .

,}500
This region is shown in Figure 5-3. The modified regiom R < R+d
can be computed using a formula for pn(a,b) from Durbin (1973):

b O

Numerical methods can be used to solve the equation

pn(a:b) =

psoo (8,.5) = ,05 |
The solution i1s a = ,50375 . This gives a modified K-S 952 confidence
region

R < 2R + .0075 .

This region is also included in Figure 5-3. Note that it gives much
greater precision in the right tail. This is achieved at the sacrifice
of precision in the right tail.

It should be noted that the tail of an empirical CDF behaves like
a Poisson process and consequently the properties of these modified K-S
regions can be approximated by properties of Poisson processes; see
Dwass (1974) and Pyke (1959).
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5.4 Comparison of procedures

The K-S procedure gives the greatest flexibility because it pro-
v.des simultaneous bounds, but this is paid for with a huge sample size
1equirement. The modified K-S procedure reduces this price somewhat.

If a single cut-off value X, can be fixed, for which a confi-
dence region on R(xo) is useful, this can be obtained using the

hinomial distribution, with considerably fewer chservations than the
‘=~S. However, it can be done only for a single point.

If a desired mean coverage probability or coverage-guarantee
pair can be predetermined, then the prediction interval approach may be
nsed. However, data snooping is not allowed.

A conparison of sample sizes required to achieve a precision of

10-5 with 997 confidence is given in Table 5-4. (Note that Mean Cover-

age statements do not involve confidence.)

8. Conservative Risk Profiles

Engineering design has long used "safety factors" to ensure the
adequacy and the safety of physical and electronic systems. This may
be looked at as a heuristic, but operationally viable, way to deal with
the uncer.ainty of the enviromment in which a given system will operate.
Not having sufficient knowledge about the eaviromment to design for it
precisely, - : takes a "conservative" approach in using safety factors
to desig. ror extreme conditions that might arise. One can then say
that ic there is an "error" in the design, then it is surely an "error

o1 the conservative side."

It seems desirable to follow a similar principle of conservatism
in generatirg and reporting results of the GFRAP. Assuming that the
GFRAP will ultimately report the risks associated with the use of CF in
covwerical aircraft to be "sm. 1," the results of the risk analysis will

be more readily accepted if it can be stated that they overestimate the

- 108 -



T-419

TABLE 5-4

REQUIRED SAMPLE SIZES FOR 997 CONFIDENCE

STATEMENTS WITRH 10_4 PRECISION

e Kolmogorov-Smirnov
R < kn+1o"' . n=23x10°
B < R +107 , n=2.3x10"

«Modified RKolmogorov-Smirnov (Poisson approximation)

R < 2R 4107 , n=4.6x10"

-Blaomisl (R (x,) = 1074

4 4

R(x0)=§ Bh(xo) + 10 5 .4 x 10

™
-
]

*Mean Coverage

P{next observation > XiL]} = 10-4 , n= 104

eGuaranteed Coverage

P(Demage > x[“1} < 107 , n=4.6x10"

true risks. It should be stated that it is not really possible to pre-
sent the "true risks" because of modeling limitations, data inadequacies,

and limited financial resources.

The results of the risk analysis are summarized in two risk pro-
files, the national annual risk profile and the national conditional
(given one accident) risk profile. We therefore use the following
concept of conservatism for risk profiles. If two risk profiles do
not cross, it is justifiable to say that the one above and to the

right of the other is more conservative (or pessimistic, or repres:.nts
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~a greater amount of risk). Figure 4-25 (in Section 4.4.3) illustrates
such a case. The risk profile for r=2 is above and to the right of
that for r=1 . That the former is more pessimistic folllows from the
following two observations: (1) For every damage value d , the pro-
file for r=2 shows a higher probability of exceeding d than does
the profile for r=1 . (2) For every probability p , the profile for
r=2 shows a higher value d such that Prob{damage > d} = p than does
the profile for r=1.

Thus if we present GFRAP results jn the form of risk profiles
which are known to be above and to the right of the "true" unknowm risk
profiles, we present results which are conseréative. This section is
concerned with methods by which such conservative risk profiles may be
obtained. Section 6.1 formalizes the above concept of two risk profiles
which do not cross through the concept of stochastic dominance. Section
6.2 shows how this concept can be used operationally in the GFRAP in
order to obtain conservative results, and Section 6.3 summarizes and
interprets the preceding developments. Several theorem. are stated in

Section 6.2 without proof in order to comserve space.

6.1 Stochastic dominance

Stochastic dominance is a concept which has become very important
in the area of decision making under uncertainty, but it also has useful
application here to risk profiles. The following definitions and proper-
ties may be found in Whitemore and Findlay (1978) unless noted otherwise.
We adopt the notation that F = 1-F for any CDF F .

The .basic definition of first degree stochastic dominance is the

following: Let F and G be CDF's. Now F °F G (F "stochastically

dominates” G) if and only if F(x) > G(x) for all real values x .

This says that F %;’ G 1if and only if the risk profile corresponding to

the CDF F 1lies above (or at least not below) and to the right (or at
least not to the left) of that corvesponding to G ; i.e., the risk
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profile corresponding to F 1s comservative relative to that correspond-
ing to G .

Another notation for indicating first degree stochastic dominance
is in terms of random variables having the indicated CDF's. Let X and
Y be random variables with respective CDF's F and G . One writes

X > Y if and only if rsg G.

A useful result is the folllowing: Let U

1 be the set of nonde-

creasing functions on the real line. Then F ?g G 1if and only if

JudF > fudG for all functions u in U, for which these integrals

1
exist.

Suppose G represents ome of the two "true" risk profiles that
are desired among the final outputs of the GFRAP risk analysis. Not
being able to determine 5', as indicated above, we want to report a

risk profile ¥ such that F sf G . The general idea is to replace all

estimated and projected quantit?és and probability distributions which
enter the simulation model by "conservative" ones. The next section
provides details.

6.2 Obtaining conservative risk
profiles

We deal first with the national annual risk profile and relate .t
to the national conditional (given one accident) risk profile. Denote
these by H and F , respectively, and define the following random
variables:

Xi = the damage done by the it} accident that occurs
during the year, i=1,2,... ;

S = the total damage done by all accidents that occur
during the year;

Z = the number of accidents that occur during the
year,
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Then § has CDF H, each X, has CDF F , the X £ are mutually inde-

i 1

pendent, and

Z

120 1

where Xb is a random variable which is identically zero.

Let the CDF of the discrete random variable Z be G , and con-
sider what happens if G 1s replaced by G* , where G* 1is the CDF of

another discrete nonnegative random variable, say 2Z* , such that

6+ % G ie., 2> Z. Let

and let H* be the CDF of S* . Theorem 6.1 then states that H* % H
so that a conservative risk profile is obtained by replacing the CDF of
Z by a CDF which is stochastically greater.

Theorem 6.1: 1f G* ;f G , then H* Ef H , or equivalently, S* 21 S .

We have assumed that Z has a Poisson distribution with mean 1y .
The next theorem states that increasing the value of u yields a CDF of

Gt for 2z* such that Gt ¥ ¢ .

Theorem 6.2: Suppose Z and Z* both have Poisson distributions with

respective means pu and p* . Then 2% 2 2, e, G Ef G, if and

only if u* > u.

Theorems 6.1 and 6.2 together indicate that the use of a mean
number of accidents per year greater than the true mean will yield a

conservative risk profile.
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Now suppose that the CDF F corresponding to the national condi-
tional risk profile is replaced by a CDF F# such that F# Ef F.
Clearly this will lead to a conservative risk profile, say ﬁ# » For-
mally, let X: (i=1,2,...) be mutually independent random variables

with CDF F# .« Now define

Z
# ¥
s'= 1 X ,
i=0
# #
and let H be the CDF of S .
Theorem 6.3: 1f F# E{ F , then H# ii H , or equivalently, S#:; S .

1

For the GFRAP, the national conditional risk profile is the
weighted average of the single-accident risk profiles at the Na differ-

ent airports. Using the notation of Section 4.4.1, we have

R
F(x) = } p,F, (x),
Ly Prat
or equivalently, F = zipiFAi . If scme of the F .

CDF's which dominate them it is clear that a conservative national condi-

are replaced by

tional risk profile is obtained. Formally, we have Theorem 6.4.

#

. # st
Theorem 6.4: 1f F,, Tr id °

#_
4q for 1=1,...,N_ , and F = yipir

then F# if F .

In Theorem 6.4 the Py values are held fixed. If they are al-

lowed to vary, some must decrease while others increase since their sum

remains equal to one. It is intuitive that if the pi's which increase

correspond to CDF's which dominate the CDF's corresponding to the pi's
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which decrease, then a conservative national conditional riuk profile is
obtained. This is now formalized, Let N = {1,2,...,N} and let I

be disjoint subsets of N . Define a new set of probability values pz ,

ie N, such that

# +
p1>pi’ if 1ie1 ,
p#<p if ie1

i i’ »
#

Py =Py otherwise.

# # .
Now let F = zipiFid s we obtain:

Theorem 6.5; 1f Fid if Fjd for every pair (i,j) such that is:I+

and jeI. , then F#sng .

Now we step back and conmcentrate on the CDF F of the damge

id
per accident at airport i . We will show how to obtain a conservative

estimate of its corresponding risk profile Fid . We first drop the

subscript 1 , for comvenience, and to indicate that the analysis applies
at each airport.

Consider the random variable X , defined to be the damage done by

an arbitrary accident at a particular airport; it has CDF F This X

a4
is the sum of the costs due to the failure of various electronic and elec~-
trical components and systems. We number all the components and systems
which could be affected by an accident from 1 to M (a large finite num-

ber), and define the random variables
Yj = 1 if component or system j fails,

= ( otherwise

Cj = the cost incurred if Yj =1.
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We assume the C 5 to be mutually independent and independent of

the Y, . Now we write the damage X as

3

M
X = jzl chj .

From this expression it is clear that replacing the CDF of any cost Cj

by a CDF that dominates it will lead to a risk profile that is conserva-

tive relative to fh . Formally, let X* = szij . Then we have:

Theorem 8. 6: C; 2 CJ for all j=1,...,M implies X* > X,

1

We clearly have an analogous result if the Y, are replaced by Y%

h| h
such that Y; ;i Yj . Note that this means we replace the failure prob-

ability of component j by a value at least as large. Now let X* =

146375 -

Theorem 6.7: Y; 2 Yj for all j=1,...,M implies X* 2 X.

Now we will concentrate on conditions which imply Y; 3& Yj
for all j . According to the exponential failure model the probability
distribution of Y, is specified by Pr(Y

= 1) =1 - exp(-W
where the random variable Wj is defined by
W, = T,E,/E
h| 33 ’
and Eﬁ is the mean exposure to failure of component j , Ej is the

outside exposure applicable to component j , and T, 1s the overall

|

transfer coefficient (or transfer function) applicable to component j

in its individual environment. Here T, , E, , anc E, are all treated

3 3 3

as (independent) random variables; E, 1s indeed a random variable, and

i
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T, and E, are treated as such because of a lack of sufficiently pre-

3 3

cise informas fon to specify their values exactly. Note that use of the
exponentia. failure model is itself a conservative assumption for the
GFRAP (refer to Section 4.2.3).

The next theorem follows from the result given in Sectiom 6.1.

Theorem 6.8: Specify Y; by Pr(Y§-=l) =1 - exp(-Wj) . Then
% > impl Y% > .
FE2) W& plies 2 Yj
Now we concentrate on Wj . Let W§ = T?E?/E} . Since 13 . _f .
Ej ’ E; ’ ﬁa , and E? are all positive random variables one obtains:

Theorem 6.9: If T* S T E*¥ >. E, and E, >, E¥ , then W% > Wj

I=173° 1= =1l =l
and so Y¥* > Y .,
nd s iay
The last thing we wish to do here is relate the exposure Ej to

certain characteristics of the accident that produces this exposure. It
is clearly reasonable to assume that, with other factors (such as wind
direction and ve'oscity, aircraft type, duration of ~he burn, etc.) held
constant,

Ej = KFrFchf H

that is, Ej is directly proportional to (K is the proportionality
constant) the product of ch » the quantity of CF composite on the
aircraft, Fi s the fraction of the CF composite carried that is involved
in the fire, and Fr s the fraction of the CF burned that is released.
Treating ch s Fi , and Fr as random variables, and defining E# as

3

the exposure obtained in place of E, when ch ’ Fi » and Fr are

]
replaced bty Q:f . F; , and F; , respectively, we obtain the following:
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for all j=1,...,M .

6.3 Summary

We have tried in this section to give some precision to the notion
of a "conservative risk analysis" through the concepts of sto her-iz
dominance and conservative risk profiles. In essence, we have saown that
replacing the probability distributions used in the GFRAP risk simulation
model by probability distributions which stochastically dominate them
will lead tu a conservative risk analysis. Given that modeling limita-
tione, data inadequacies, etc. prevent us from determining the "true risk
profiles," we think it appropriate to report risk profiles that can be

stated to be conservative relative to the "true" ones.

In more concrete terms, for example, if the mean number of acci-
dents per year ’u is projected to be, say, 2.6, but it is recbgnized
that this projection may be in error, then an approoriatelv determined
higher value, e.g., 3.0, should be used instead in order to produce a
couservative national annual risk profile. It would be appropriate to
state that it is confidently believed that the true value of p does not

exceed 3.0.
|

The situatio. *s somewhat different when it is desired to replace
a random variable by a specific numerical value. For example, consider

the case of Fr » the fraction of the CF burned that is released. It is
known that Fr varies from accident to accident and should be treated

as a random variable. But suppose that the experimental evidence pres~

ently available indicates that values of Fr above 0.01 are extremely
improbable. It is then acceptable, and conservative, to use Fr =
0.01 , stating that it is sufficiently confidently believed that Fr

will not exceed 0.01 that such possibility has been deleted from the
modeling effort,
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